{"title":"不同广义阶的整个狄利克雷级数的相对增长","authors":"M. Sheremeta, O. Mulyava","doi":"10.31861/bmj2021.02.02","DOIUrl":null,"url":null,"abstract":"For entire functions $F$ and $G$ defined by Dirichlet series with exponents increasing to $+\\infty$ formulas are found for the finding the generalized order $\\displaystyle \\varrho_{\\alpha,\\beta}[F]_G = \\varlimsup\\limits_{\\sigma\\to=\\infty} \\frac{\\alpha(M^{-1}_G(M_F(\\sigma)))}{\\beta(\\sigma)}$ and the generalized lower order $\\displaystyle \\lambda_{\\alpha,\\beta}[F]_G=\\varliminf\\limits_{\\sigma\\to+\\infty} \\frac{\\alpha(M^{-1}_G(M_F(\\sigma)))}{\\beta(\\sigma)}$ of $F$ with respect to $G$, where $M_F(\\sigma)=\\sup\\{|F(\\sigma+it)|:\\,t\\in{\\Bbb R}\\}$ and $\\alpha$ and $\\beta$ are positive increasing to $+\\infty$ functions.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES WITH DIFFERENT GENERALIZED ORDERS\",\"authors\":\"M. Sheremeta, O. Mulyava\",\"doi\":\"10.31861/bmj2021.02.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For entire functions $F$ and $G$ defined by Dirichlet series with exponents increasing to $+\\\\infty$ formulas are found for the finding the generalized order $\\\\displaystyle \\\\varrho_{\\\\alpha,\\\\beta}[F]_G = \\\\varlimsup\\\\limits_{\\\\sigma\\\\to=\\\\infty} \\\\frac{\\\\alpha(M^{-1}_G(M_F(\\\\sigma)))}{\\\\beta(\\\\sigma)}$ and the generalized lower order $\\\\displaystyle \\\\lambda_{\\\\alpha,\\\\beta}[F]_G=\\\\varliminf\\\\limits_{\\\\sigma\\\\to+\\\\infty} \\\\frac{\\\\alpha(M^{-1}_G(M_F(\\\\sigma)))}{\\\\beta(\\\\sigma)}$ of $F$ with respect to $G$, where $M_F(\\\\sigma)=\\\\sup\\\\{|F(\\\\sigma+it)|:\\\\,t\\\\in{\\\\Bbb R}\\\\}$ and $\\\\alpha$ and $\\\\beta$ are positive increasing to $+\\\\infty$ functions.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2021.02.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES WITH DIFFERENT GENERALIZED ORDERS
For entire functions $F$ and $G$ defined by Dirichlet series with exponents increasing to $+\infty$ formulas are found for the finding the generalized order $\displaystyle \varrho_{\alpha,\beta}[F]_G = \varlimsup\limits_{\sigma\to=\infty} \frac{\alpha(M^{-1}_G(M_F(\sigma)))}{\beta(\sigma)}$ and the generalized lower order $\displaystyle \lambda_{\alpha,\beta}[F]_G=\varliminf\limits_{\sigma\to+\infty} \frac{\alpha(M^{-1}_G(M_F(\sigma)))}{\beta(\sigma)}$ of $F$ with respect to $G$, where $M_F(\sigma)=\sup\{|F(\sigma+it)|:\,t\in{\Bbb R}\}$ and $\alpha$ and $\beta$ are positive increasing to $+\infty$ functions.