神经网络的应用:分子几何优化研究

M. R. Lemes, C. R. Zacharias, Arnaldo Dal Pino Júnior
{"title":"神经网络的应用:分子几何优化研究","authors":"M. R. Lemes, C. R. Zacharias, Arnaldo Dal Pino Júnior","doi":"10.1109/SBRN.2000.889760","DOIUrl":null,"url":null,"abstract":"Summary form only given. Optimization algorithms are iterative procedures that evolve from guessed starting points (SP) to the desired global minimum. Their performance can be greatly improved, if a neural network (NN) is created to select suitable SP. In this paper we consider the use of trained NN to select possible ground-state geometries for silicon clusters. A genetic algorithm is initial population energy optimization. For convenience, a cluster's geometry is described as a piling up of plane layers of atoms.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of neural networks: a molecular geometry optimization study\",\"authors\":\"M. R. Lemes, C. R. Zacharias, Arnaldo Dal Pino Júnior\",\"doi\":\"10.1109/SBRN.2000.889760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Optimization algorithms are iterative procedures that evolve from guessed starting points (SP) to the desired global minimum. Their performance can be greatly improved, if a neural network (NN) is created to select suitable SP. In this paper we consider the use of trained NN to select possible ground-state geometries for silicon clusters. A genetic algorithm is initial population energy optimization. For convenience, a cluster's geometry is described as a piling up of plane layers of atoms.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

只提供摘要形式。优化算法是从猜测的起始点(SP)到期望的全局最小值的迭代过程。如果创建一个神经网络(NN)来选择合适的SP,它们的性能可以大大提高。在本文中,我们考虑使用训练好的神经网络来选择硅簇可能的基态几何形状。遗传算法是初始种群能量优化算法。为方便起见,团簇的几何结构被描述为原子平面层的堆积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neural networks: a molecular geometry optimization study
Summary form only given. Optimization algorithms are iterative procedures that evolve from guessed starting points (SP) to the desired global minimum. Their performance can be greatly improved, if a neural network (NN) is created to select suitable SP. In this paper we consider the use of trained NN to select possible ground-state geometries for silicon clusters. A genetic algorithm is initial population energy optimization. For convenience, a cluster's geometry is described as a piling up of plane layers of atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信