静音语音解码器采用自适应采集

M. Matsumoto
{"title":"静音语音解码器采用自适应采集","authors":"M. Matsumoto","doi":"10.1145/2559184.2559190","DOIUrl":null,"url":null,"abstract":"We investigated a classification method using brain computer interfaces (BCIs) for silent speech. Event-related potentials (ERPs) obtained when four subjects imagined the vocalization of two Japanese vowels while they remained silent and immobilized were recorded. We used an adaptive collection (AC) that adaptively selects suitable output signals of common spatial patterns (CSP) filters and its time duration for classification. The classification accuracies (CAs) were 73-92% for the pairwise classification /a/ vs. /u/ in the use of 63 channels and significantly better than previous study.","PeriodicalId":206452,"journal":{"name":"IUI Companion '14","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Silent speech decoder using adaptive collection\",\"authors\":\"M. Matsumoto\",\"doi\":\"10.1145/2559184.2559190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated a classification method using brain computer interfaces (BCIs) for silent speech. Event-related potentials (ERPs) obtained when four subjects imagined the vocalization of two Japanese vowels while they remained silent and immobilized were recorded. We used an adaptive collection (AC) that adaptively selects suitable output signals of common spatial patterns (CSP) filters and its time duration for classification. The classification accuracies (CAs) were 73-92% for the pairwise classification /a/ vs. /u/ in the use of 63 channels and significantly better than previous study.\",\"PeriodicalId\":206452,\"journal\":{\"name\":\"IUI Companion '14\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI Companion '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2559184.2559190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI Companion '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2559184.2559190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了一种基于脑机接口(bci)的无声言语分类方法。记录了4名被试在静止不动状态下想象两个日语元音发声时的事件相关电位(event - associated potential, ERPs)。我们使用自适应采集(AC),自适应地选择合适的公共空间模式(CSP)滤波器的输出信号及其持续时间进行分类。在63个通道中,/a/ vs /u/两两分类的分类准确率(CAs)为73 ~ 92%,明显优于前人的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silent speech decoder using adaptive collection
We investigated a classification method using brain computer interfaces (BCIs) for silent speech. Event-related potentials (ERPs) obtained when four subjects imagined the vocalization of two Japanese vowels while they remained silent and immobilized were recorded. We used an adaptive collection (AC) that adaptively selects suitable output signals of common spatial patterns (CSP) filters and its time duration for classification. The classification accuracies (CAs) were 73-92% for the pairwise classification /a/ vs. /u/ in the use of 63 channels and significantly better than previous study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信