最大见证码的一些构造

Nikolaos Makriyannis, Bertrand Meyer
{"title":"最大见证码的一些构造","authors":"Nikolaos Makriyannis, Bertrand Meyer","doi":"10.1109/ISIT.2011.6033928","DOIUrl":null,"url":null,"abstract":"Given a code C ∈ F<sup>n</sup><inf>2</inf> and a word c ∈ C, a witness of c is a subset W ⊆ {, 1∦, n} of coordinate positions such that c differs from any other codeword c′ ∈ C on the indices in W. If any codeword posseses a witness of given length w, C is called a w-witness code. This paper gives new constructions of large w-witness codes and proves with a numerical method that their sizes are maximal for certain values of n and w. Our technique is in the spirit of Delsarte's linear programming bound on the size of classical codes and relies on the Lovász theta number, semidefinite programming, and reduction through symmetry.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some constructions of maximal witness codes\",\"authors\":\"Nikolaos Makriyannis, Bertrand Meyer\",\"doi\":\"10.1109/ISIT.2011.6033928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a code C ∈ F<sup>n</sup><inf>2</inf> and a word c ∈ C, a witness of c is a subset W ⊆ {, 1∦, n} of coordinate positions such that c differs from any other codeword c′ ∈ C on the indices in W. If any codeword posseses a witness of given length w, C is called a w-witness code. This paper gives new constructions of large w-witness codes and proves with a numerical method that their sizes are maximal for certain values of n and w. Our technique is in the spirit of Delsarte's linear programming bound on the size of classical codes and relies on the Lovász theta number, semidefinite programming, and reduction through symmetry.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6033928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定一个码C∈Fn2,一个字C∈C, C的一个证明是坐标位置的子集W∈{,1∦,n},使得C在W中的指标上不同于任何其他码字C′∈C。如果任何码字具有给定长度W的证明,则C称为W -证明码。本文给出了大w-见证码的新结构,并用数值方法证明了它们的大小在n和w的一定值下是极大的。我们的技术是在Delsarte关于经典码大小的线性规划界的精神上,依靠Lovász θ数、半定规划和对称约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some constructions of maximal witness codes
Given a code C ∈ Fn2 and a word c ∈ C, a witness of c is a subset W ⊆ {, 1∦, n} of coordinate positions such that c differs from any other codeword c′ ∈ C on the indices in W. If any codeword posseses a witness of given length w, C is called a w-witness code. This paper gives new constructions of large w-witness codes and proves with a numerical method that their sizes are maximal for certain values of n and w. Our technique is in the spirit of Delsarte's linear programming bound on the size of classical codes and relies on the Lovász theta number, semidefinite programming, and reduction through symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信