环和代数中幂值广义导数的湮灭子

Hamidur Rahaman
{"title":"环和代数中幂值广义导数的湮灭子","authors":"Hamidur Rahaman","doi":"10.36753/mathenot.631172","DOIUrl":null,"url":null,"abstract":"Let F , G be two generalized derivations of prime ring R with characteristic different from 2 with associated derivations D 1 and D 2 respectively. We use the symbols C = Z ( U ) and U to denote the the extended centroid of R and Utumi ring of quotient of R respectively. Let 0 (cid:54) = a ∈ R and F and G satisfy a { ( F ( xy ) + G ( yx )) m − [ x, y ] n } = 0 for all x, y ∈ J , a nonzero ideal, where m and n are natural numbers. Then either R is commutative or there exists c , b ∈ U such that F ( x ) = cx and G ( x ) = bx for all x ∈ R","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annihilator of generalized derivations with power values in rings and Algebras\",\"authors\":\"Hamidur Rahaman\",\"doi\":\"10.36753/mathenot.631172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F , G be two generalized derivations of prime ring R with characteristic different from 2 with associated derivations D 1 and D 2 respectively. We use the symbols C = Z ( U ) and U to denote the the extended centroid of R and Utumi ring of quotient of R respectively. Let 0 (cid:54) = a ∈ R and F and G satisfy a { ( F ( xy ) + G ( yx )) m − [ x, y ] n } = 0 for all x, y ∈ J , a nonzero ideal, where m and n are natural numbers. Then either R is commutative or there exists c , b ∈ U such that F ( x ) = cx and G ( x ) = bx for all x ∈ R\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.631172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.631172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设F, G为特征不同于2的素数环R的两个广义导数,其相关导数分别为d1和d2。用符号C = Z (U)和U分别表示R的扩展质心和R商的Utumi环。设0 (cid:54) = a∈R, F和G满足a {(F (xy) + G (yx)) m−[x, y] n} = 0,对于所有x, y∈J,一个非零理想,其中m和n是自然数。要么R是可交换的,要么存在c, b∈U使得F (x) = cx, G (x) = bx对于所有x∈R
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annihilator of generalized derivations with power values in rings and Algebras
Let F , G be two generalized derivations of prime ring R with characteristic different from 2 with associated derivations D 1 and D 2 respectively. We use the symbols C = Z ( U ) and U to denote the the extended centroid of R and Utumi ring of quotient of R respectively. Let 0 (cid:54) = a ∈ R and F and G satisfy a { ( F ( xy ) + G ( yx )) m − [ x, y ] n } = 0 for all x, y ∈ J , a nonzero ideal, where m and n are natural numbers. Then either R is commutative or there exists c , b ∈ U such that F ( x ) = cx and G ( x ) = bx for all x ∈ R
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信