{"title":"基于欺骗表面等离子体激元的紧凑准八木天线","authors":"Yijuan Yang, Zheng Li, Bang Wei, Junhong Wang","doi":"10.1109/ISAPE.2018.8634195","DOIUrl":null,"url":null,"abstract":"A novel quasi-Yagi antenna is presented based on spoof surface plasmon polaritons (SSPPs). In the new design, the antenna consists of a transition from a coplanar waveguide to an SSPPs waveguide, an SSPPs balun, an SSPPs driving dipole, and two SSPPs directors. The lengths of the driving dipole and director are approximately reduced by 32% and 27% compared with that of the conventional antenna in the free space without substrate, as a result of high phase constant on the SSPPs. Numerical simulations demonstrate good performance of the proposed structure, which has a gain of 8.7 dBi operating at 3 GHz. The proposed SSPPs quasi-Yagi antenna has potential value in wireless communication systems due to its compact dimension and good performance.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Compact Quasi-Yagi Antenna Based on Spoof Surface Plasmon Polaritons\",\"authors\":\"Yijuan Yang, Zheng Li, Bang Wei, Junhong Wang\",\"doi\":\"10.1109/ISAPE.2018.8634195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel quasi-Yagi antenna is presented based on spoof surface plasmon polaritons (SSPPs). In the new design, the antenna consists of a transition from a coplanar waveguide to an SSPPs waveguide, an SSPPs balun, an SSPPs driving dipole, and two SSPPs directors. The lengths of the driving dipole and director are approximately reduced by 32% and 27% compared with that of the conventional antenna in the free space without substrate, as a result of high phase constant on the SSPPs. Numerical simulations demonstrate good performance of the proposed structure, which has a gain of 8.7 dBi operating at 3 GHz. The proposed SSPPs quasi-Yagi antenna has potential value in wireless communication systems due to its compact dimension and good performance.\",\"PeriodicalId\":297368,\"journal\":{\"name\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPE.2018.8634195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPE.2018.8634195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compact Quasi-Yagi Antenna Based on Spoof Surface Plasmon Polaritons
A novel quasi-Yagi antenna is presented based on spoof surface plasmon polaritons (SSPPs). In the new design, the antenna consists of a transition from a coplanar waveguide to an SSPPs waveguide, an SSPPs balun, an SSPPs driving dipole, and two SSPPs directors. The lengths of the driving dipole and director are approximately reduced by 32% and 27% compared with that of the conventional antenna in the free space without substrate, as a result of high phase constant on the SSPPs. Numerical simulations demonstrate good performance of the proposed structure, which has a gain of 8.7 dBi operating at 3 GHz. The proposed SSPPs quasi-Yagi antenna has potential value in wireless communication systems due to its compact dimension and good performance.