二维和三维流形上仿射连接的扭转张量

K. Polyakova
{"title":"二维和三维流形上仿射连接的扭转张量","authors":"K. Polyakova","doi":"10.5922/0321-4796-2021-52-9","DOIUrl":null,"url":null,"abstract":"The basis for this study of affine connections in linear frame bundle over a smooth manifold is the structure equations of the bundle. An affine connection is given in this bundle by the Laptev — Lumiste method. The differential equations are written for components of the deformation ten­sor from an affine connection to the symmetrical canonical one. The ex­pressions for the components of the torsion tensor for two-dimensional and three-dimensional manifolds were found.\n\nFor a two-dimensional manifold, the affine torsion is a fraction, in the numerator there is a linear combination of two fiber coordinates which coefficients are two functions depending on the base coordinates (the co­ordinates on the base), and in the denominator there is the determinant composed of the fiber coordinates (the coordinates in a fiber). For a three-dimensional manifold, the arbitrariness of the numerator is determined by nine functions depending on the base coordinates.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the torsion tensor of an affine connection on two-dimensional and three-dimensional manifolds\",\"authors\":\"K. Polyakova\",\"doi\":\"10.5922/0321-4796-2021-52-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basis for this study of affine connections in linear frame bundle over a smooth manifold is the structure equations of the bundle. An affine connection is given in this bundle by the Laptev — Lumiste method. The differential equations are written for components of the deformation ten­sor from an affine connection to the symmetrical canonical one. The ex­pressions for the components of the torsion tensor for two-dimensional and three-dimensional manifolds were found.\\n\\nFor a two-dimensional manifold, the affine torsion is a fraction, in the numerator there is a linear combination of two fiber coordinates which coefficients are two functions depending on the base coordinates (the co­ordinates on the base), and in the denominator there is the determinant composed of the fiber coordinates (the coordinates in a fiber). For a three-dimensional manifold, the arbitrariness of the numerator is determined by nine functions depending on the base coordinates.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2021-52-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究光滑流形上线性框架束的仿射连接的基础是该束的结构方程。在这个包中,用Laptev - Lumiste方法给出了一个仿射连接。给出了仿射连接到对称正则连接的变形量的微分方程。得到了二维和三维流形的扭转张量分量的表达式。对于二维流形,仿射扭转是一个分数,在分子中有两个纤维坐标的线性组合,其系数是依赖于基坐标(基坐标)的两个函数,在分母中有由纤维坐标组成的行列式(纤维中的坐标)。对于三维流形,分子的任意性由依赖于基坐标的九个函数决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the torsion tensor of an affine connection on two-dimensional and three-dimensional manifolds
The basis for this study of affine connections in linear frame bundle over a smooth manifold is the structure equations of the bundle. An affine connection is given in this bundle by the Laptev — Lumiste method. The differential equations are written for components of the deformation ten­sor from an affine connection to the symmetrical canonical one. The ex­pressions for the components of the torsion tensor for two-dimensional and three-dimensional manifolds were found. For a two-dimensional manifold, the affine torsion is a fraction, in the numerator there is a linear combination of two fiber coordinates which coefficients are two functions depending on the base coordinates (the co­ordinates on the base), and in the denominator there is the determinant composed of the fiber coordinates (the coordinates in a fiber). For a three-dimensional manifold, the arbitrariness of the numerator is determined by nine functions depending on the base coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信