{"title":"结合确定性和遗传方法的顺序电路测试生成","authors":"E. Rudnick, J. Patel","doi":"10.1145/217474.217527","DOIUrl":null,"url":null,"abstract":"A hybrid sequential circuit test generator is described which combines deterministic algorithms for fault excitation and propagation with genetic algorithms for state justification. Deterministic procedures for state justification are used if the genetic approach is unsuccessful, to allow for identification of untestable faults and to improve the fault coverage. High fault coverages were obtained for the ISCAS89 benchmark circuits and several additional circuits, and in many cases the results are better than those for purely deterministic approaches.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Combining Deterministic and Genetic Approaches for Sequential Circuit Test Generation\",\"authors\":\"E. Rudnick, J. Patel\",\"doi\":\"10.1145/217474.217527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid sequential circuit test generator is described which combines deterministic algorithms for fault excitation and propagation with genetic algorithms for state justification. Deterministic procedures for state justification are used if the genetic approach is unsuccessful, to allow for identification of untestable faults and to improve the fault coverage. High fault coverages were obtained for the ISCAS89 benchmark circuits and several additional circuits, and in many cases the results are better than those for purely deterministic approaches.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Deterministic and Genetic Approaches for Sequential Circuit Test Generation
A hybrid sequential circuit test generator is described which combines deterministic algorithms for fault excitation and propagation with genetic algorithms for state justification. Deterministic procedures for state justification are used if the genetic approach is unsuccessful, to allow for identification of untestable faults and to improve the fault coverage. High fault coverages were obtained for the ISCAS89 benchmark circuits and several additional circuits, and in many cases the results are better than those for purely deterministic approaches.