{"title":"用于三维形状识别的点云主曲率","authors":"J. Lev, Joo-Hwee Lim, Nizar Ouarti","doi":"10.1109/ICIP.2017.8296353","DOIUrl":null,"url":null,"abstract":"In the recent years, we experienced the proliferation of sensors for retrieving depth information on a scene, such as LIDAR or RGBD sensors (Kinect). However, it is still a challenge to identify the meaning of a specific point cloud to recognize the underlying object. Here, we wonder if it is possible to define a global feature for an object that is robust to noise, sampling and occlusion. We propose a local measure based on curvature. We called it Principal Curvature because rather than using the Gaussian curvature we keep the information of the two principal curvatures. In our approach, this local information is then aggregated as histograms that are compared with a Chi-2 metric. Results show the robustness of the method particularly when only few points are available. This means that our approach can be very suitable to match objects even with a limited resolution and possible occlusions. It could be particularly adapted to recognize objects with LIDAR inputs.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Principal curvature of point cloud for 3D shape recognition\",\"authors\":\"J. Lev, Joo-Hwee Lim, Nizar Ouarti\",\"doi\":\"10.1109/ICIP.2017.8296353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years, we experienced the proliferation of sensors for retrieving depth information on a scene, such as LIDAR or RGBD sensors (Kinect). However, it is still a challenge to identify the meaning of a specific point cloud to recognize the underlying object. Here, we wonder if it is possible to define a global feature for an object that is robust to noise, sampling and occlusion. We propose a local measure based on curvature. We called it Principal Curvature because rather than using the Gaussian curvature we keep the information of the two principal curvatures. In our approach, this local information is then aggregated as histograms that are compared with a Chi-2 metric. Results show the robustness of the method particularly when only few points are available. This means that our approach can be very suitable to match objects even with a limited resolution and possible occlusions. It could be particularly adapted to recognize objects with LIDAR inputs.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Principal curvature of point cloud for 3D shape recognition
In the recent years, we experienced the proliferation of sensors for retrieving depth information on a scene, such as LIDAR or RGBD sensors (Kinect). However, it is still a challenge to identify the meaning of a specific point cloud to recognize the underlying object. Here, we wonder if it is possible to define a global feature for an object that is robust to noise, sampling and occlusion. We propose a local measure based on curvature. We called it Principal Curvature because rather than using the Gaussian curvature we keep the information of the two principal curvatures. In our approach, this local information is then aggregated as histograms that are compared with a Chi-2 metric. Results show the robustness of the method particularly when only few points are available. This means that our approach can be very suitable to match objects even with a limited resolution and possible occlusions. It could be particularly adapted to recognize objects with LIDAR inputs.