利用语义网进行无监督的口语理解

Larry Heck, Dilek Z. Hakkani-Tür
{"title":"利用语义网进行无监督的口语理解","authors":"Larry Heck, Dilek Z. Hakkani-Tür","doi":"10.1109/SLT.2012.6424227","DOIUrl":null,"url":null,"abstract":"This paper proposes an unsupervised training approach for SLU systems that leverages the structured semantic knowledge graphs of the emerging Semantic Web. The approach creates natural language surface forms of entity-relation-entity portions of knowledge graphs using a combination of web search retrieval and syntax-based dependency parsing. The new forms are used to train an SLU system in an unsupervised manner. This paper tests the approach on the problem of intent detection, and shows that the unsupervised training procedure matches the performance of supervised training over operating points important for commercial applications.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Exploiting the Semantic Web for unsupervised spoken language understanding\",\"authors\":\"Larry Heck, Dilek Z. Hakkani-Tür\",\"doi\":\"10.1109/SLT.2012.6424227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an unsupervised training approach for SLU systems that leverages the structured semantic knowledge graphs of the emerging Semantic Web. The approach creates natural language surface forms of entity-relation-entity portions of knowledge graphs using a combination of web search retrieval and syntax-based dependency parsing. The new forms are used to train an SLU system in an unsupervised manner. This paper tests the approach on the problem of intent detection, and shows that the unsupervised training procedure matches the performance of supervised training over operating points important for commercial applications.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

本文提出了一种利用新兴语义网的结构化语义知识图的SLU系统无监督训练方法。该方法使用网络搜索检索和基于语法的依赖解析相结合的方法,创建知识图的实体-关系-实体部分的自然语言表面形式。新的表格用于以无监督的方式训练SLU系统。本文在意图检测问题上对该方法进行了测试,结果表明,在重要的商业应用操作点上,无监督训练过程的性能与监督训练相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the Semantic Web for unsupervised spoken language understanding
This paper proposes an unsupervised training approach for SLU systems that leverages the structured semantic knowledge graphs of the emerging Semantic Web. The approach creates natural language surface forms of entity-relation-entity portions of knowledge graphs using a combination of web search retrieval and syntax-based dependency parsing. The new forms are used to train an SLU system in an unsupervised manner. This paper tests the approach on the problem of intent detection, and shows that the unsupervised training procedure matches the performance of supervised training over operating points important for commercial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信