Jiangzhou Zhang, Yingying Zhang, W. Shuai, Zhenxiao Li
{"title":"Research on Real-time Object Detection Algorithm in Traffic Monitoring Scene","authors":"Jiangzhou Zhang, Yingying Zhang, W. Shuai, Zhenxiao Li","doi":"10.1109/ICPECA51329.2021.9362684","DOIUrl":null,"url":null,"abstract":"Aiming at the detection precision and detection speed of Mobilenetv2-YOLOv3 in the process of object detection, the feature extraction module is improved to improve the network feature extraction capability; the FPN multi-feature fusion module and multi-scale aggregation module are used to enhance information between multi-scale feature maps Fusion; Introduce the dilated convolution to build the receptive field module, Improve the ability to extract features of different scale object, and improve detection precision; According to the characteristics of the KITTI data set, K-means algorithm is adopted for dimension clustering to obtain the new anchor box parameter values. Test the algorithm performance on the KITTI dataset, Experimental results show that compared with Mobilenetv2-YOLOv3, the improved algorithm improves the mAP by 8.99%, and the detection speed reaches 14FPS on the embedded hardware TX2 development board.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对Mobilenetv2-YOLOv3在目标检测过程中的检测精度和检测速度,改进了特征提取模块,提高了网络特征提取能力;采用FPN多特征融合模块和多尺度聚合模块增强多尺度特征映射之间的信息融合;引入扩展卷积构建接收野模块,提高了对不同尺度目标特征的提取能力,提高了检测精度;根据KITTI数据集的特点,采用K-means算法进行维数聚类,得到新的锚盒参数值。在KITTI数据集上测试算法性能,实验结果表明,与Mobilenetv2-YOLOv3相比,改进算法的mAP提高了8.99%,在嵌入式硬件TX2开发板上检测速度达到14FPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Real-time Object Detection Algorithm in Traffic Monitoring Scene
Aiming at the detection precision and detection speed of Mobilenetv2-YOLOv3 in the process of object detection, the feature extraction module is improved to improve the network feature extraction capability; the FPN multi-feature fusion module and multi-scale aggregation module are used to enhance information between multi-scale feature maps Fusion; Introduce the dilated convolution to build the receptive field module, Improve the ability to extract features of different scale object, and improve detection precision; According to the characteristics of the KITTI data set, K-means algorithm is adopted for dimension clustering to obtain the new anchor box parameter values. Test the algorithm performance on the KITTI dataset, Experimental results show that compared with Mobilenetv2-YOLOv3, the improved algorithm improves the mAP by 8.99%, and the detection speed reaches 14FPS on the embedded hardware TX2 development board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信