{"title":"微机械射频电感器的优化设计","authors":"Jr-Wei Lin, C.C. Chen, J.K. Huang, Y. Cheng","doi":"10.1109/RFIC.2004.1320702","DOIUrl":null,"url":null,"abstract":"With a complete performance investigation of the on-chip micromachined inductor with mechanical disturbances using ANSYS and HFSS simulators, an optimum structural design of the micromachined spiral inductors with fully CMOS compatible post-processes for RFIC applications is proposed in this paper. Via the incorporation of a sandwich dielectric membrane (0.7 /spl mu/m SiO/sub 2// 0.7 /spl mu/m Si/sub 3/N/sub 4// 0.7 /spl mu/m TEOS) to enhance the structural rigidity, the inductor can have better signal stability. As compared, the new design of a 5nH micromachined inductor can have less than 45% inductance variation than the conventional one while both devices operate at 8GHz but with 10 m/sec/sup 2/ acceleration. Meanwhile, using a cross shape instead of blanket membrane can also effectively eliminate the inductance variation induced by the working temperature change (20/spl deg/C to 75/spl deg/C). It's our belief that the new micromachined inductors can have not only high Q performance but also better signal stability suitable for wide range RFIC applications.","PeriodicalId":140604,"journal":{"name":"2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An optimum design of the micromachined RF inductor\",\"authors\":\"Jr-Wei Lin, C.C. Chen, J.K. Huang, Y. Cheng\",\"doi\":\"10.1109/RFIC.2004.1320702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a complete performance investigation of the on-chip micromachined inductor with mechanical disturbances using ANSYS and HFSS simulators, an optimum structural design of the micromachined spiral inductors with fully CMOS compatible post-processes for RFIC applications is proposed in this paper. Via the incorporation of a sandwich dielectric membrane (0.7 /spl mu/m SiO/sub 2// 0.7 /spl mu/m Si/sub 3/N/sub 4// 0.7 /spl mu/m TEOS) to enhance the structural rigidity, the inductor can have better signal stability. As compared, the new design of a 5nH micromachined inductor can have less than 45% inductance variation than the conventional one while both devices operate at 8GHz but with 10 m/sec/sup 2/ acceleration. Meanwhile, using a cross shape instead of blanket membrane can also effectively eliminate the inductance variation induced by the working temperature change (20/spl deg/C to 75/spl deg/C). It's our belief that the new micromachined inductors can have not only high Q performance but also better signal stability suitable for wide range RFIC applications.\",\"PeriodicalId\":140604,\"journal\":{\"name\":\"2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2004.1320702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2004.1320702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An optimum design of the micromachined RF inductor
With a complete performance investigation of the on-chip micromachined inductor with mechanical disturbances using ANSYS and HFSS simulators, an optimum structural design of the micromachined spiral inductors with fully CMOS compatible post-processes for RFIC applications is proposed in this paper. Via the incorporation of a sandwich dielectric membrane (0.7 /spl mu/m SiO/sub 2// 0.7 /spl mu/m Si/sub 3/N/sub 4// 0.7 /spl mu/m TEOS) to enhance the structural rigidity, the inductor can have better signal stability. As compared, the new design of a 5nH micromachined inductor can have less than 45% inductance variation than the conventional one while both devices operate at 8GHz but with 10 m/sec/sup 2/ acceleration. Meanwhile, using a cross shape instead of blanket membrane can also effectively eliminate the inductance variation induced by the working temperature change (20/spl deg/C to 75/spl deg/C). It's our belief that the new micromachined inductors can have not only high Q performance but also better signal stability suitable for wide range RFIC applications.