神经网络在网络入侵检测中的应用

A. Lazarevic, D. Pokrajac, J. Nikolic
{"title":"神经网络在网络入侵检测中的应用","authors":"A. Lazarevic, D. Pokrajac, J. Nikolic","doi":"10.1109/NEUREL.2006.341176","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the applications of multilayer perceptrons for classification of network intrusion detection data characterized by skewed class distributions. We compare several methods for learning from such skewed distributions by manipulating data records. The investigated methods include oversampling, undersampling and generating artificial data records using SMOTE technique. The presented methods are tested on KDDCup99 network intrusion dataset and compared using various classification performance metrics. In addition, the influence of decision margin on recall and misclassification rates is also examined","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Applications of Neural Networks in Network Intrusion Detection\",\"authors\":\"A. Lazarevic, D. Pokrajac, J. Nikolic\",\"doi\":\"10.1109/NEUREL.2006.341176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the applications of multilayer perceptrons for classification of network intrusion detection data characterized by skewed class distributions. We compare several methods for learning from such skewed distributions by manipulating data records. The investigated methods include oversampling, undersampling and generating artificial data records using SMOTE technique. The presented methods are tested on KDDCup99 network intrusion dataset and compared using various classification performance metrics. In addition, the influence of decision margin on recall and misclassification rates is also examined\",\"PeriodicalId\":231606,\"journal\":{\"name\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2006.341176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们讨论了多层感知器在以偏类分布为特征的网络入侵检测数据分类中的应用。我们比较了几种通过操纵数据记录从这种倾斜分布中学习的方法。研究的方法包括过采样、欠采样和利用SMOTE技术生成人工数据记录。在KDDCup99网络入侵数据集上对所提出的方法进行了测试,并使用各种分类性能指标进行了比较。此外,还研究了决策裕度对召回率和误分类率的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Neural Networks in Network Intrusion Detection
In this paper, we discuss the applications of multilayer perceptrons for classification of network intrusion detection data characterized by skewed class distributions. We compare several methods for learning from such skewed distributions by manipulating data records. The investigated methods include oversampling, undersampling and generating artificial data records using SMOTE technique. The presented methods are tested on KDDCup99 network intrusion dataset and compared using various classification performance metrics. In addition, the influence of decision margin on recall and misclassification rates is also examined
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信