{"title":"学生方程式电动车发射控制系统建模与仿真","authors":"Arpan Biswas, Rahul Yadav","doi":"10.1109/ITEC-India53713.2021.9932532","DOIUrl":null,"url":null,"abstract":"To reduce excessive wheel spin which results in a loss of traction different types of control systems are used in an electric car, one of which is- Launch Control System (LCS). These control systems prevent excessive spinning of wheels by keeping them in optimal slip range to produce maximum tractive force. While developing such systems attention is given to identify proper slip estimates, deriving the required torque value, and finally, a control strategy to keep these in the optimal range. In this paper we propose a constraint optimal slip control to maintain the maximum possible tire force possible, the control strategy is applied to a Formula Student vehicle, which is constrained to certain rules as specified by the competitions. MATLAB/Simulink software was used to develop a full vehicle model including a tire model having a tire slip control system. The vehicle model was then simulated using IPG CarMaker software to estimate the difference in lap time with and without the slip control, this was done for a straight-line acceleration event.","PeriodicalId":162261,"journal":{"name":"2021 IEEE Transportation Electrification Conference (ITEC-India)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and Simulation of Launch Control System for Formula Student Electric Vehicle\",\"authors\":\"Arpan Biswas, Rahul Yadav\",\"doi\":\"10.1109/ITEC-India53713.2021.9932532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce excessive wheel spin which results in a loss of traction different types of control systems are used in an electric car, one of which is- Launch Control System (LCS). These control systems prevent excessive spinning of wheels by keeping them in optimal slip range to produce maximum tractive force. While developing such systems attention is given to identify proper slip estimates, deriving the required torque value, and finally, a control strategy to keep these in the optimal range. In this paper we propose a constraint optimal slip control to maintain the maximum possible tire force possible, the control strategy is applied to a Formula Student vehicle, which is constrained to certain rules as specified by the competitions. MATLAB/Simulink software was used to develop a full vehicle model including a tire model having a tire slip control system. The vehicle model was then simulated using IPG CarMaker software to estimate the difference in lap time with and without the slip control, this was done for a straight-line acceleration event.\",\"PeriodicalId\":162261,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference (ITEC-India)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference (ITEC-India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC-India53713.2021.9932532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-India53713.2021.9932532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Simulation of Launch Control System for Formula Student Electric Vehicle
To reduce excessive wheel spin which results in a loss of traction different types of control systems are used in an electric car, one of which is- Launch Control System (LCS). These control systems prevent excessive spinning of wheels by keeping them in optimal slip range to produce maximum tractive force. While developing such systems attention is given to identify proper slip estimates, deriving the required torque value, and finally, a control strategy to keep these in the optimal range. In this paper we propose a constraint optimal slip control to maintain the maximum possible tire force possible, the control strategy is applied to a Formula Student vehicle, which is constrained to certain rules as specified by the competitions. MATLAB/Simulink software was used to develop a full vehicle model including a tire model having a tire slip control system. The vehicle model was then simulated using IPG CarMaker software to estimate the difference in lap time with and without the slip control, this was done for a straight-line acceleration event.