具有有限数据不确定性的MSE-ratio遗憾估计

Yonina C. Eldar
{"title":"具有有限数据不确定性的MSE-ratio遗憾估计","authors":"Yonina C. Eldar","doi":"10.5281/ZENODO.38180","DOIUrl":null,"url":null,"abstract":"We consider the problem of robust estimation of a deterministic bounded parameter vector x in a linear model. While in an earlier work, we proposed a minimax estimation approach in which we seek the estimator that minimizes the worst-case mean-squared error (MSE) difference regret over all bounded vectors x, here we consider an alternative approach, in which we seek the estimator that minimizes the worst-case MSE ratio regret, namely, the worst-case ratio between the MSE attainable using a linear estimator ignorant of x, and the minimum MSE attainable using a linear estimator that knows x. The rational behind this approach is that the value of the difference regret may not adequately reflect the estimator performance, since even a large regret should be considered insignificant if the value of the optimal MSE is relatively large.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSE-ratio regret estimation with bounded data uncertainties\",\"authors\":\"Yonina C. Eldar\",\"doi\":\"10.5281/ZENODO.38180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of robust estimation of a deterministic bounded parameter vector x in a linear model. While in an earlier work, we proposed a minimax estimation approach in which we seek the estimator that minimizes the worst-case mean-squared error (MSE) difference regret over all bounded vectors x, here we consider an alternative approach, in which we seek the estimator that minimizes the worst-case MSE ratio regret, namely, the worst-case ratio between the MSE attainable using a linear estimator ignorant of x, and the minimum MSE attainable using a linear estimator that knows x. The rational behind this approach is that the value of the difference regret may not adequately reflect the estimator performance, since even a large regret should be considered insignificant if the value of the optimal MSE is relatively large.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究线性模型中确定性有界参数向量x的鲁棒估计问题。在早期的工作中,我们提出了一种极小极大估计方法,在这种方法中,我们寻求最小化所有有界向量x上的最坏情况均方误差(MSE)差差遗憾的估计量,在这里我们考虑了一种替代方法,在这种方法中,我们寻求最小化最坏情况MSE比率遗憾的估计量,即使用不知道x的线性估计量可获得的MSE之间的最坏情况比率,以及使用知道x的线性估计器可以获得的最小MSE。这种方法背后的理性是,差差的值可能不能充分反映估计器的性能,因为如果最优MSE的值相对较大,即使很大的遗憾也应该被认为是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSE-ratio regret estimation with bounded data uncertainties
We consider the problem of robust estimation of a deterministic bounded parameter vector x in a linear model. While in an earlier work, we proposed a minimax estimation approach in which we seek the estimator that minimizes the worst-case mean-squared error (MSE) difference regret over all bounded vectors x, here we consider an alternative approach, in which we seek the estimator that minimizes the worst-case MSE ratio regret, namely, the worst-case ratio between the MSE attainable using a linear estimator ignorant of x, and the minimum MSE attainable using a linear estimator that knows x. The rational behind this approach is that the value of the difference regret may not adequately reflect the estimator performance, since even a large regret should be considered insignificant if the value of the optimal MSE is relatively large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信