螺旋运动下多面体的碰撞预测

Byungmoon Kim, J. Rossignac
{"title":"螺旋运动下多面体的碰撞预测","authors":"Byungmoon Kim, J. Rossignac","doi":"10.1145/781606.781612","DOIUrl":null,"url":null,"abstract":"The prediction of collisions amongst N rigid objects may be reduced to a series of computations of the time to first contact for all pairs of objects. Simple enclosing bounds and hierarchical partitions of the space-time domain are often used to avoid testing object-pairs that clearly will not collide. When the remaining pairs involve only polyhedra under straight-line translation, the exact computation of the collision time and of the contacts requires only solving for intersections between linear geometries. When a pair is subject to a more general relative motion, such a direct collision prediction calculation may be intractable. The popular brute force collision detection strategy of executing the motion for a series of small time steps and of checking for static interferences after each step is often computationally prohibitive. We propose instead a less expensive collision prediction strategy, where we approximate the relative motion between pairs of objects by a sequence of screw motion segments, each defined by the relative position and orientation of the two objects at the beginning and at the end of the segment. We reduce the computation of the exact collision time and of the corresponding face/vertex and edge/edge collision points to the numeric extraction of the roots of simple univariate analytic functions. Furthermore, we propose a series of simple rejection tests, which exploit the particularity of the screw motion to immediately decide that some objects do not collide or to speed-up the prediction of collisions by about 30%, avoiding on average 3/4 of the root-finding queries even when the object actually collide.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Collision prediction for polyhedra under screw motions\",\"authors\":\"Byungmoon Kim, J. Rossignac\",\"doi\":\"10.1145/781606.781612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of collisions amongst N rigid objects may be reduced to a series of computations of the time to first contact for all pairs of objects. Simple enclosing bounds and hierarchical partitions of the space-time domain are often used to avoid testing object-pairs that clearly will not collide. When the remaining pairs involve only polyhedra under straight-line translation, the exact computation of the collision time and of the contacts requires only solving for intersections between linear geometries. When a pair is subject to a more general relative motion, such a direct collision prediction calculation may be intractable. The popular brute force collision detection strategy of executing the motion for a series of small time steps and of checking for static interferences after each step is often computationally prohibitive. We propose instead a less expensive collision prediction strategy, where we approximate the relative motion between pairs of objects by a sequence of screw motion segments, each defined by the relative position and orientation of the two objects at the beginning and at the end of the segment. We reduce the computation of the exact collision time and of the corresponding face/vertex and edge/edge collision points to the numeric extraction of the roots of simple univariate analytic functions. Furthermore, we propose a series of simple rejection tests, which exploit the particularity of the screw motion to immediately decide that some objects do not collide or to speed-up the prediction of collisions by about 30%, avoiding on average 3/4 of the root-finding queries even when the object actually collide.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/781606.781612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

N个刚体之间的碰撞预测可以简化为对所有物体的首次接触时间的一系列计算。通常使用简单的封闭边界和时空域的分层划分来避免测试明显不会碰撞的对象对。当剩余的对只涉及直线平移的多面体时,碰撞时间和接触的精确计算只需要求解线性几何之间的交点。当一对物体受到更一般的相对运动时,这种直接的碰撞预测计算可能是难以处理的。流行的蛮力碰撞检测策略是在一系列小的时间步执行运动,并在每一步之后检查静态干扰,这在计算上往往是令人望而却步的。我们提出了一种更便宜的碰撞预测策略,其中我们通过一系列螺旋运动段来近似对象对之间的相对运动,每个运动段由两个对象在段的开始和结束处的相对位置和方向定义。我们将精确的碰撞时间和相应的面/顶点和边/边碰撞点的计算减少到简单的单变量解析函数的根的数值提取。此外,我们提出了一系列简单的拒绝测试,这些测试利用螺旋运动的特殊性,可以立即确定某些物体不会碰撞或将碰撞预测速度提高约30%,即使在物体实际碰撞时,平均也可以避免3/4的寻根查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collision prediction for polyhedra under screw motions
The prediction of collisions amongst N rigid objects may be reduced to a series of computations of the time to first contact for all pairs of objects. Simple enclosing bounds and hierarchical partitions of the space-time domain are often used to avoid testing object-pairs that clearly will not collide. When the remaining pairs involve only polyhedra under straight-line translation, the exact computation of the collision time and of the contacts requires only solving for intersections between linear geometries. When a pair is subject to a more general relative motion, such a direct collision prediction calculation may be intractable. The popular brute force collision detection strategy of executing the motion for a series of small time steps and of checking for static interferences after each step is often computationally prohibitive. We propose instead a less expensive collision prediction strategy, where we approximate the relative motion between pairs of objects by a sequence of screw motion segments, each defined by the relative position and orientation of the two objects at the beginning and at the end of the segment. We reduce the computation of the exact collision time and of the corresponding face/vertex and edge/edge collision points to the numeric extraction of the roots of simple univariate analytic functions. Furthermore, we propose a series of simple rejection tests, which exploit the particularity of the screw motion to immediately decide that some objects do not collide or to speed-up the prediction of collisions by about 30%, avoiding on average 3/4 of the root-finding queries even when the object actually collide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信