Yuzuko C. Nakamura, Daniel M. Troniak, Alberto Rodriguez, M. T. Mason, N. Pollard
{"title":"野外抓握的复杂性","authors":"Yuzuko C. Nakamura, Daniel M. Troniak, Alberto Rodriguez, M. T. Mason, N. Pollard","doi":"10.1109/HUMANOIDS.2017.8246880","DOIUrl":null,"url":null,"abstract":"The recent ubiquity of high-framerate (120 fps and higher) handheld cameras creates the opportunity to study human grasping at a greater level of detail than normal speed cameras allow. We first collected 91 slow-motion interactions with objects in a convenience store setting. We then annotated the actions through the lenses of various existing manipulation taxonomies. We found manipulation, particularly the process of forming a grasp, is complicated and proceeds quickly. Our dataset shows that there are many ways that people deal with clutter in order to form a strong grasp of an object. It also reveals several errors and how people recover from them. Though annotating motions in detail is time-consuming, the annotation systems we used nevertheless leave out important aspects of understanding manipulation actions, such as how the environment is functioning as a “finger” of sorts, how different parts of the hand can be involved in different grasping tasks, and high-level intent.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The complexities of grasping in the wild\",\"authors\":\"Yuzuko C. Nakamura, Daniel M. Troniak, Alberto Rodriguez, M. T. Mason, N. Pollard\",\"doi\":\"10.1109/HUMANOIDS.2017.8246880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent ubiquity of high-framerate (120 fps and higher) handheld cameras creates the opportunity to study human grasping at a greater level of detail than normal speed cameras allow. We first collected 91 slow-motion interactions with objects in a convenience store setting. We then annotated the actions through the lenses of various existing manipulation taxonomies. We found manipulation, particularly the process of forming a grasp, is complicated and proceeds quickly. Our dataset shows that there are many ways that people deal with clutter in order to form a strong grasp of an object. It also reveals several errors and how people recover from them. Though annotating motions in detail is time-consuming, the annotation systems we used nevertheless leave out important aspects of understanding manipulation actions, such as how the environment is functioning as a “finger” of sorts, how different parts of the hand can be involved in different grasping tasks, and high-level intent.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The recent ubiquity of high-framerate (120 fps and higher) handheld cameras creates the opportunity to study human grasping at a greater level of detail than normal speed cameras allow. We first collected 91 slow-motion interactions with objects in a convenience store setting. We then annotated the actions through the lenses of various existing manipulation taxonomies. We found manipulation, particularly the process of forming a grasp, is complicated and proceeds quickly. Our dataset shows that there are many ways that people deal with clutter in order to form a strong grasp of an object. It also reveals several errors and how people recover from them. Though annotating motions in detail is time-consuming, the annotation systems we used nevertheless leave out important aspects of understanding manipulation actions, such as how the environment is functioning as a “finger” of sorts, how different parts of the hand can be involved in different grasping tasks, and high-level intent.