流连接的性能建模

Vincenzo Gulisano, A. Papadopoulos, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas
{"title":"流连接的性能建模","authors":"Vincenzo Gulisano, A. Papadopoulos, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas","doi":"10.1145/3093742.3093923","DOIUrl":null,"url":null,"abstract":"Streaming analysis is widely used in a variety of environments, from cloud computing infrastructures up to the network's edge. In these contexts, accurate modeling of streaming operators' performance enables fine-grained prediction of applications' behavior without the need of costly monitoring. This is of utmost importance for computationally-expensive operators like stream joins, that observe throughput and latency very sensitive to rate-varying data streams, especially when deterministic processing is required. In this paper, we present a modeling framework for estimating the throughput and the latency of stream join processing. The model is presented in an incremental step-wise manner, starting from a centralized non-deterministic stream join and expanding up to a deterministic parallel stream join. The model describes how the dynamics of throughput and latency are influenced by the number of physical input streams, as well as by the amount of parallelism in the actual processing and the requirement for determinism. We present an experimental validation of the model with respect to the actual implementation. The proposed model can provide insights that are catalytic for understanding the behavior of stream joins against different system deployments, with special emphasis on the influences of determinism and parallelization.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Performance Modeling of Stream Joins\",\"authors\":\"Vincenzo Gulisano, A. Papadopoulos, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas\",\"doi\":\"10.1145/3093742.3093923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streaming analysis is widely used in a variety of environments, from cloud computing infrastructures up to the network's edge. In these contexts, accurate modeling of streaming operators' performance enables fine-grained prediction of applications' behavior without the need of costly monitoring. This is of utmost importance for computationally-expensive operators like stream joins, that observe throughput and latency very sensitive to rate-varying data streams, especially when deterministic processing is required. In this paper, we present a modeling framework for estimating the throughput and the latency of stream join processing. The model is presented in an incremental step-wise manner, starting from a centralized non-deterministic stream join and expanding up to a deterministic parallel stream join. The model describes how the dynamics of throughput and latency are influenced by the number of physical input streams, as well as by the amount of parallelism in the actual processing and the requirement for determinism. We present an experimental validation of the model with respect to the actual implementation. The proposed model can provide insights that are catalytic for understanding the behavior of stream joins against different system deployments, with special emphasis on the influences of determinism and parallelization.\",\"PeriodicalId\":325666,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3093742.3093923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3093923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

流分析广泛应用于各种环境,从云计算基础设施到网络边缘。在这些环境中,流操作符性能的精确建模可以实现对应用程序行为的细粒度预测,而不需要昂贵的监控。这对于流连接等计算开销大的操作非常重要,这些操作观察吞吐量和延迟,对速率变化的数据流非常敏感,特别是在需要确定性处理时。在本文中,我们提出了一个用于估计流连接处理的吞吐量和延迟的建模框架。该模型采用循序渐进的方式,从集中式非确定性流连接开始,扩展到确定性并行流连接。该模型描述了吞吐量和延迟的动态如何受到物理输入流数量、实际处理中的并行性数量和确定性需求的影响。我们提出了一个实验验证的模型相对于实际实现。所提出的模型可以为理解针对不同系统部署的流连接行为提供催化性的见解,特别强调确定性和并行化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Modeling of Stream Joins
Streaming analysis is widely used in a variety of environments, from cloud computing infrastructures up to the network's edge. In these contexts, accurate modeling of streaming operators' performance enables fine-grained prediction of applications' behavior without the need of costly monitoring. This is of utmost importance for computationally-expensive operators like stream joins, that observe throughput and latency very sensitive to rate-varying data streams, especially when deterministic processing is required. In this paper, we present a modeling framework for estimating the throughput and the latency of stream join processing. The model is presented in an incremental step-wise manner, starting from a centralized non-deterministic stream join and expanding up to a deterministic parallel stream join. The model describes how the dynamics of throughput and latency are influenced by the number of physical input streams, as well as by the amount of parallelism in the actual processing and the requirement for determinism. We present an experimental validation of the model with respect to the actual implementation. The proposed model can provide insights that are catalytic for understanding the behavior of stream joins against different system deployments, with special emphasis on the influences of determinism and parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信