无线边缘环境中的实用连续聚合

P. Costa, J. Leitao
{"title":"无线边缘环境中的实用连续聚合","authors":"P. Costa, J. Leitao","doi":"10.1109/SRDS.2018.00015","DOIUrl":null,"url":null,"abstract":"The edge computing paradigm brings the promise of overcoming the practical scalability limitations of cloud computing, that are a result of the high volume of data produced by Internet of Things (IoT) and other large-scale applications. The principle of edge computing is to move computations beyond the data center, closer to end-user devices where data is generated and consumed. This new paradigm creates the opportunity for edge-enabled systems and applications, that have components executing directly and cooperatively on edge devices. Having systems' components, actively and directly, collaborating in the edge, requires some form of distributed monitoring as to adapt to variable operational conditions. Monitoring requires efficient ways to aggregate information collected from multiple devices. In particular, and considering some IoT applications, monitoring will happen among devices that communicate primarily via wireless channels. In this paper we study the practical performance of several distributed continuous aggregation protocols in the wireless ad hoc setting, and propose a novel protocol that is more precise and robust than competing alternative.","PeriodicalId":219374,"journal":{"name":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Practical Continuous Aggregation in Wireless Edge Environments\",\"authors\":\"P. Costa, J. Leitao\",\"doi\":\"10.1109/SRDS.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge computing paradigm brings the promise of overcoming the practical scalability limitations of cloud computing, that are a result of the high volume of data produced by Internet of Things (IoT) and other large-scale applications. The principle of edge computing is to move computations beyond the data center, closer to end-user devices where data is generated and consumed. This new paradigm creates the opportunity for edge-enabled systems and applications, that have components executing directly and cooperatively on edge devices. Having systems' components, actively and directly, collaborating in the edge, requires some form of distributed monitoring as to adapt to variable operational conditions. Monitoring requires efficient ways to aggregate information collected from multiple devices. In particular, and considering some IoT applications, monitoring will happen among devices that communicate primarily via wireless channels. In this paper we study the practical performance of several distributed continuous aggregation protocols in the wireless ad hoc setting, and propose a novel protocol that is more precise and robust than competing alternative.\",\"PeriodicalId\":219374,\"journal\":{\"name\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

边缘计算范式有望克服云计算的实际可扩展性限制,这些限制是由物联网(IoT)和其他大规模应用程序产生的大量数据造成的。边缘计算的原理是将计算移出数据中心,更接近生成和使用数据的最终用户设备。这种新模式为支持边缘的系统和应用程序创造了机会,这些系统和应用程序的组件可以在边缘设备上直接协作执行。让系统的组件在边缘进行主动和直接的协作,需要某种形式的分布式监控,以适应可变的操作条件。监控需要有效的方法来聚合从多个设备收集的信息。特别是,考虑到一些物联网应用,监控将发生在主要通过无线通道通信的设备之间。本文研究了几种分布式连续聚合协议在无线自组织环境下的实际性能,提出了一种比竞争方案更精确、更鲁棒的新协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Continuous Aggregation in Wireless Edge Environments
The edge computing paradigm brings the promise of overcoming the practical scalability limitations of cloud computing, that are a result of the high volume of data produced by Internet of Things (IoT) and other large-scale applications. The principle of edge computing is to move computations beyond the data center, closer to end-user devices where data is generated and consumed. This new paradigm creates the opportunity for edge-enabled systems and applications, that have components executing directly and cooperatively on edge devices. Having systems' components, actively and directly, collaborating in the edge, requires some form of distributed monitoring as to adapt to variable operational conditions. Monitoring requires efficient ways to aggregate information collected from multiple devices. In particular, and considering some IoT applications, monitoring will happen among devices that communicate primarily via wireless channels. In this paper we study the practical performance of several distributed continuous aggregation protocols in the wireless ad hoc setting, and propose a novel protocol that is more precise and robust than competing alternative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信