海岸卫星分类模式的比较

Sun Wei-hao, Shih-Huan Tseng
{"title":"海岸卫星分类模式的比较","authors":"Sun Wei-hao, Shih-Huan Tseng","doi":"10.1109/ISPACS51563.2021.9651114","DOIUrl":null,"url":null,"abstract":"Due to rapid climate change, the task to observe and quantify shoreline position is important to coastal protection and management. CoastSat is a time-series shoreline detection system that using artificial neural network ANN on image classification. This paper further compared 4 image classification models such as decision tree classifier DTC, non-linear support vector machine (SVM), k-nearest neighbors (KNN) and linear SVM with stochastic gradient descent (SGD) on the Qijn images from the satellite, Landsat 8. The experimental results demonstrate accuracies, F1 scores and precision-recall curves on different models. Finally, the work shows that ANN is the best model in CoastSat image classification.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparisons of Classification Models on COASTSAT\",\"authors\":\"Sun Wei-hao, Shih-Huan Tseng\",\"doi\":\"10.1109/ISPACS51563.2021.9651114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to rapid climate change, the task to observe and quantify shoreline position is important to coastal protection and management. CoastSat is a time-series shoreline detection system that using artificial neural network ANN on image classification. This paper further compared 4 image classification models such as decision tree classifier DTC, non-linear support vector machine (SVM), k-nearest neighbors (KNN) and linear SVM with stochastic gradient descent (SGD) on the Qijn images from the satellite, Landsat 8. The experimental results demonstrate accuracies, F1 scores and precision-recall curves on different models. Finally, the work shows that ANN is the best model in CoastSat image classification.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于气候的快速变化,岸线位置的观测和量化对海岸保护和管理具有重要意义。海岸卫星是一种利用人工神经网络对图像进行分类的时序海岸线检测系统。本文进一步在Landsat 8卫星的Qijn图像上比较了决策树分类器DTC、非线性支持向量机(SVM)、k近邻(KNN)和随机梯度下降(SGD)线性支持向量机(SVM) 4种图像分类模型。实验结果验证了不同模型下的准确率、F1分数和查准率曲线。最后,研究表明,人工神经网络是海岸卫星图像分类的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparisons of Classification Models on COASTSAT
Due to rapid climate change, the task to observe and quantify shoreline position is important to coastal protection and management. CoastSat is a time-series shoreline detection system that using artificial neural network ANN on image classification. This paper further compared 4 image classification models such as decision tree classifier DTC, non-linear support vector machine (SVM), k-nearest neighbors (KNN) and linear SVM with stochastic gradient descent (SGD) on the Qijn images from the satellite, Landsat 8. The experimental results demonstrate accuracies, F1 scores and precision-recall curves on different models. Finally, the work shows that ANN is the best model in CoastSat image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信