智能反射表面辅助移动边缘计算的最小-最大延迟优化

Runxian Li, Wanming Hao, Fang Wang, Shou-yi Yang
{"title":"智能反射表面辅助移动边缘计算的最小-最大延迟优化","authors":"Runxian Li, Wanming Hao, Fang Wang, Shou-yi Yang","doi":"10.1109/ICCT56141.2022.10072766","DOIUrl":null,"url":null,"abstract":"Computation offloading has been regarded as an effective scheme to reduce the latency in mobile edge computing (MEC) system. However, the offloading latency will be extremely increased when the propagation link is poor. To improve the offloading performance, we apply the intelligent reflecting surface (IRS) to the MEC system, and propose an IRS-assisted MEC system. We formulate a min-max user latency problem by jointly optimization of offloading strategy, computing resources and IRS phase shift. To solve the non-convex problem, we propose an alternate iterative algorithm to decouple it into two subproblems. In particular, the successive convex approximation and semidefinite relaxation techniques are exploited to solve the two subproblems, respectively. The simulation results show that, compared with the traditional scheme, the proposed scheme can effectively improve user's fairness and reduce the user's latency.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Min-Max Latency Optimization for Intelligent Reflecting Surface-Assisted Mobile Edge Computing\",\"authors\":\"Runxian Li, Wanming Hao, Fang Wang, Shou-yi Yang\",\"doi\":\"10.1109/ICCT56141.2022.10072766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation offloading has been regarded as an effective scheme to reduce the latency in mobile edge computing (MEC) system. However, the offloading latency will be extremely increased when the propagation link is poor. To improve the offloading performance, we apply the intelligent reflecting surface (IRS) to the MEC system, and propose an IRS-assisted MEC system. We formulate a min-max user latency problem by jointly optimization of offloading strategy, computing resources and IRS phase shift. To solve the non-convex problem, we propose an alternate iterative algorithm to decouple it into two subproblems. In particular, the successive convex approximation and semidefinite relaxation techniques are exploited to solve the two subproblems, respectively. The simulation results show that, compared with the traditional scheme, the proposed scheme can effectively improve user's fairness and reduce the user's latency.\",\"PeriodicalId\":294057,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT56141.2022.10072766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10072766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在移动边缘计算(MEC)系统中,计算卸载被认为是降低延迟的有效方案。但是,当传播链路较差时,卸载延迟会大大增加。为了提高卸载性能,我们将智能反射面(IRS)应用于MEC系统,提出了一种IRS辅助的MEC系统。通过对卸载策略、计算资源和IRS相移进行联合优化,提出了最小最大用户延迟问题。为了解决非凸问题,我们提出了一种替代迭代算法将其解耦为两个子问题。特别地,利用连续凸逼近和半定松弛技术分别求解了这两个子问题。仿真结果表明,与传统方案相比,所提方案能有效提高用户公平性,降低用户延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Min-Max Latency Optimization for Intelligent Reflecting Surface-Assisted Mobile Edge Computing
Computation offloading has been regarded as an effective scheme to reduce the latency in mobile edge computing (MEC) system. However, the offloading latency will be extremely increased when the propagation link is poor. To improve the offloading performance, we apply the intelligent reflecting surface (IRS) to the MEC system, and propose an IRS-assisted MEC system. We formulate a min-max user latency problem by jointly optimization of offloading strategy, computing resources and IRS phase shift. To solve the non-convex problem, we propose an alternate iterative algorithm to decouple it into two subproblems. In particular, the successive convex approximation and semidefinite relaxation techniques are exploited to solve the two subproblems, respectively. The simulation results show that, compared with the traditional scheme, the proposed scheme can effectively improve user's fairness and reduce the user's latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信