有限混合的非参数估计

S. Bonhomme, Koen Jochmans, J. Robin
{"title":"有限混合的非参数估计","authors":"S. Bonhomme, Koen Jochmans, J. Robin","doi":"10.1920/WP.CEM.2014.1114","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the mixing proportions and the mixture distributions, and various functionals thereof. We also discuss inference on the number of components. These estimators are found to perform well in a series of Monte Carlo exercises. We apply our techniques to document heterogeneity in log annual earnings using PSID data spanning the period 1969–1998.","PeriodicalId":325508,"journal":{"name":"Sciences Po publications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Nonparametric estimation of finite mixtures\",\"authors\":\"S. Bonhomme, Koen Jochmans, J. Robin\",\"doi\":\"10.1920/WP.CEM.2014.1114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the mixing proportions and the mixture distributions, and various functionals thereof. We also discuss inference on the number of components. These estimators are found to perform well in a series of Monte Carlo exercises. We apply our techniques to document heterogeneity in log annual earnings using PSID data spanning the period 1969–1998.\",\"PeriodicalId\":325508,\"journal\":{\"name\":\"Sciences Po publications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sciences Po publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1920/WP.CEM.2014.1114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sciences Po publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2014.1114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文的目的是提供一种简单的非参数方法,从重复测量的数据中估计有限混合模型。三次测量足以充分识别混合物,因此我们的方法甚至可以用于非常短的面板数据。我们提供了混合比例和混合分布估计量的分布理论,以及它们的各种泛函。我们还讨论了关于分量数的推断。这些估计器在一系列蒙特卡洛练习中表现良好。我们利用1969年至1998年期间的PSID数据,应用我们的技术来记录日志年度收益的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric estimation of finite mixtures
The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the mixing proportions and the mixture distributions, and various functionals thereof. We also discuss inference on the number of components. These estimators are found to perform well in a series of Monte Carlo exercises. We apply our techniques to document heterogeneity in log annual earnings using PSID data spanning the period 1969–1998.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信