基于深度学习技术的三维姿态方程求解器研究

Tao Shan, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu
{"title":"基于深度学习技术的三维姿态方程求解器研究","authors":"Tao Shan, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu","doi":"10.1109/COMPEM.2018.8496657","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the feasibility of applying deep learning technique to build a 3D electrostatic solver. A deep convolutional neural network (CNN) is proposed to take advantage of the power of CNN in approximation of highly nonlinear functions and prediction of the potential distribution of electrostatic field. Compared with traditional numerical solvers based on finite difference scheme, this method uses a data-driven end-to-end model. Numerical experiments show that the prediction error can reach below 3 percent and the computing time can be significantly reduced compared with traditional finite difference solvers.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Study on a 3D Possion's Equation Slover Based on Deep Learning Technique\",\"authors\":\"Tao Shan, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, Ji Wu\",\"doi\":\"10.1109/COMPEM.2018.8496657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the feasibility of applying deep learning technique to build a 3D electrostatic solver. A deep convolutional neural network (CNN) is proposed to take advantage of the power of CNN in approximation of highly nonlinear functions and prediction of the potential distribution of electrostatic field. Compared with traditional numerical solvers based on finite difference scheme, this method uses a data-driven end-to-end model. Numerical experiments show that the prediction error can reach below 3 percent and the computing time can be significantly reduced compared with traditional finite difference solvers.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本研究中,我们探讨了应用深度学习技术构建三维静电求解器的可行性。提出了一种深度卷积神经网络(CNN),利用CNN在高度非线性函数逼近和静电场电位分布预测方面的强大功能。与传统的基于有限差分格式的数值求解方法相比,该方法采用了数据驱动的端到端模型。数值实验表明,与传统的有限差分法相比,预测误差可达3%以下,计算时间显著缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on a 3D Possion's Equation Slover Based on Deep Learning Technique
In this study, we investigate the feasibility of applying deep learning technique to build a 3D electrostatic solver. A deep convolutional neural network (CNN) is proposed to take advantage of the power of CNN in approximation of highly nonlinear functions and prediction of the potential distribution of electrostatic field. Compared with traditional numerical solvers based on finite difference scheme, this method uses a data-driven end-to-end model. Numerical experiments show that the prediction error can reach below 3 percent and the computing time can be significantly reduced compared with traditional finite difference solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信