PCTL的可靠近似和渐近概率双模拟

Massimo Bartoletti, Maurizio Murgia, R. Zunino
{"title":"PCTL的可靠近似和渐近概率双模拟","authors":"Massimo Bartoletti, Maurizio Murgia, R. Zunino","doi":"10.46298/lmcs-19(1:22)2023","DOIUrl":null,"url":null,"abstract":"We tackle the problem of establishing the soundness of approximate\nbisimilarity with respect to PCTL and its relaxed semantics. To this purpose,\nwe consider a notion of bisimilarity inspired by the one introduced by\nDesharnais, Laviolette, and Tracol, and parametric with respect to an\napproximation error $\\delta$, and to the depth $n$ of the observation along\ntraces. Essentially, our soundness theorem establishes that, when a state $q$\nsatisfies a given formula up-to error $\\delta$ and steps $n$, and $q$ is\nbisimilar to $q'$ up-to error $\\delta'$ and enough steps, we prove that $q'$\nalso satisfies the formula up-to a suitable error $\\delta\"$ and steps $n$. The\nnew error $\\delta\"$ is computed from $\\delta$, $\\delta'$ and the formula, and\nonly depends linearly on $n$. We provide a detailed overview of our soundness\nproof. We extend our bisimilarity notion to families of states, thus obtaining\nan asymptotic equivalence on such families. We then consider an asymptotic\nsatisfaction relation for PCTL formulae, and prove that asymptotically\nequivalent families of states asymptotically satisfy the same formulae.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound approximate and asymptotic probabilistic bisimulations for PCTL\",\"authors\":\"Massimo Bartoletti, Maurizio Murgia, R. Zunino\",\"doi\":\"10.46298/lmcs-19(1:22)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the problem of establishing the soundness of approximate\\nbisimilarity with respect to PCTL and its relaxed semantics. To this purpose,\\nwe consider a notion of bisimilarity inspired by the one introduced by\\nDesharnais, Laviolette, and Tracol, and parametric with respect to an\\napproximation error $\\\\delta$, and to the depth $n$ of the observation along\\ntraces. Essentially, our soundness theorem establishes that, when a state $q$\\nsatisfies a given formula up-to error $\\\\delta$ and steps $n$, and $q$ is\\nbisimilar to $q'$ up-to error $\\\\delta'$ and enough steps, we prove that $q'$\\nalso satisfies the formula up-to a suitable error $\\\\delta\\\"$ and steps $n$. The\\nnew error $\\\\delta\\\"$ is computed from $\\\\delta$, $\\\\delta'$ and the formula, and\\nonly depends linearly on $n$. We provide a detailed overview of our soundness\\nproof. We extend our bisimilarity notion to families of states, thus obtaining\\nan asymptotic equivalence on such families. We then consider an asymptotic\\nsatisfaction relation for PCTL formulae, and prove that asymptotically\\nequivalent families of states asymptotically satisfy the same formulae.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(1:22)2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:22)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了关于PCTL及其宽松语义的近似相似的合理性的建立问题。为此,我们考虑由desharnais, Laviolette和Tracol引入的启发的双相似性概念,并且参数化近似误差$\delta$和沿迹观测的深度$n$。本质上,我们的稳健性定理建立了,当一个状态$q$满足一个给定的公式,直到误差$\delta$和阶跃$n$,并且$q$与$q'$直到误差$\delta'$和足够的阶跃$q'$相似时,我们证明$q'$也满足公式,直到一个合适的误差$\delta'$和阶跃$n$。新的错误$\delta"$是从$\delta$, $\delta'$和公式中计算出来的,并且只线性依赖于$n$。我们提供了我们的隔音的详细概述。我们将双相似概念推广到国家族,从而得到了这些族上的渐近等价。然后考虑PCTL公式的渐近满足关系,并证明渐近等价族渐近满足相同的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound approximate and asymptotic probabilistic bisimulations for PCTL
We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof. We extend our bisimilarity notion to families of states, thus obtaining an asymptotic equivalence on such families. We then consider an asymptotic satisfaction relation for PCTL formulae, and prove that asymptotically equivalent families of states asymptotically satisfy the same formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信