高斯-马尔可夫变量的平均积

B. Logan, J. Mazo, A. Odlyzko, L. Shepp
{"title":"高斯-马尔可夫变量的平均积","authors":"B. Logan, J. Mazo, A. Odlyzko, L. Shepp","doi":"10.1002/J.1538-7305.1983.TB03463.X","DOIUrl":null,"url":null,"abstract":"Let x<inf>i</inf> be members of a stationary sequence of zero mean Gaussian random variables having correlations Ex<inf>i</inf> x<inf>j</inf> = σ<sup>2</sup> ρ<sup>|i-j|</sup>, 0 < ρ < 1, σ > 0. We address the behavior of the averaged product q<inf>m</inf>(ρ, σ) ≡ Ex<inf>1</inf> x<inf>2</inf> ··· x<inf>2m−1</inf> x<inf>2m</inf> as m becomes large. Our principal result when σ<sup>2</sup> = 1 is that this average approaches zero (infinity) as ρ is less (greater) than the critical value ρ<inf>c</inf> = 0.563007169…. To obtain this we introduce a linear recurrence for the ρ<inf>m</inf>·(ρ, σ), and then continue generating an entire sequence of recurrences, where the (n + 1)-st relation is a recurrence for the coefficients that appear in the nth relation. This leads to a new, simple continued fraction representation for the generating function of the q<inf>m</inf>(ρ, σ). The related problem with q<inf>m</inf>(ρ, σ) = E| x<inf>1</inf> ··· x<inf>m</inf>| is studied via integral equations and is shown to possess a smaller critical correlation value.","PeriodicalId":447574,"journal":{"name":"The Bell System Technical Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the average product of Gauss-Markov variables\",\"authors\":\"B. Logan, J. Mazo, A. Odlyzko, L. Shepp\",\"doi\":\"10.1002/J.1538-7305.1983.TB03463.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let x<inf>i</inf> be members of a stationary sequence of zero mean Gaussian random variables having correlations Ex<inf>i</inf> x<inf>j</inf> = σ<sup>2</sup> ρ<sup>|i-j|</sup>, 0 < ρ < 1, σ > 0. We address the behavior of the averaged product q<inf>m</inf>(ρ, σ) ≡ Ex<inf>1</inf> x<inf>2</inf> ··· x<inf>2m−1</inf> x<inf>2m</inf> as m becomes large. Our principal result when σ<sup>2</sup> = 1 is that this average approaches zero (infinity) as ρ is less (greater) than the critical value ρ<inf>c</inf> = 0.563007169…. To obtain this we introduce a linear recurrence for the ρ<inf>m</inf>·(ρ, σ), and then continue generating an entire sequence of recurrences, where the (n + 1)-st relation is a recurrence for the coefficients that appear in the nth relation. This leads to a new, simple continued fraction representation for the generating function of the q<inf>m</inf>(ρ, σ). The related problem with q<inf>m</inf>(ρ, σ) = E| x<inf>1</inf> ··· x<inf>m</inf>| is studied via integral equations and is shown to possess a smaller critical correlation value.\",\"PeriodicalId\":447574,\"journal\":{\"name\":\"The Bell System Technical Journal\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bell System Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/J.1538-7305.1983.TB03463.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/J.1538-7305.1983.TB03463.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

设xi是相关系数为Exi xj = σ2 ρ|i-j|, 0 < ρ < 1, σ > 0的零均值高斯随机变量平稳序列的成员。我们讨论了当m变大时,平均积qm(ρ, σ)≡Ex1 x2··x2m−1 x2m的行为。当σ2 = 1时,我们的主要结果是,当ρ小于(大于)临界值ρc = 0.563007169....时,这个平均值趋于零(无穷大)为了得到这一点,我们引入了ρm·(ρ, σ)的线性递归,然后继续生成整个递归序列,其中(n + 1)-st关系是第n个关系中出现的系数的递归。这就得到了qm(ρ, σ)的生成函数的一种新的、简单的连分式表示。用积分方程研究了qm(ρ, σ) = E| x1···xm|的相关问题,证明了qm(ρ, σ)具有较小的临界相关值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the average product of Gauss-Markov variables
Let xi be members of a stationary sequence of zero mean Gaussian random variables having correlations Exi xj = σ2 ρ|i-j|, 0 < ρ < 1, σ > 0. We address the behavior of the averaged product qm(ρ, σ) ≡ Ex1 x2 ··· x2m−1 x2m as m becomes large. Our principal result when σ2 = 1 is that this average approaches zero (infinity) as ρ is less (greater) than the critical value ρc = 0.563007169…. To obtain this we introduce a linear recurrence for the ρm·(ρ, σ), and then continue generating an entire sequence of recurrences, where the (n + 1)-st relation is a recurrence for the coefficients that appear in the nth relation. This leads to a new, simple continued fraction representation for the generating function of the qm(ρ, σ). The related problem with qm(ρ, σ) = E| x1 ··· xm| is studied via integral equations and is shown to possess a smaller critical correlation value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信