一种利用由修正拉盖尔多项式系统生成的多项式系统求解二阶微分方程柯西问题的数值方法

G. Akniyev, R. Gadzhimirzaev
{"title":"一种利用由修正拉盖尔多项式系统生成的多项式系统求解二阶微分方程柯西问题的数值方法","authors":"G. Akniyev, R. Gadzhimirzaev","doi":"10.31029/demr.12.2","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a numerical realization of an iterative method for solving the Cauchy problem for ordinary differential equations, based on representing the solution in the form of a Fourier series by the system of polynomials $\\{L_{1,n}(x;b)\\}_{n=0}^\\infty$, orthonormal with respect to the Sobolev-type inner product $$ \\langle f,g\\rangle=f(0)g(0)+\\int_{0}^\\infty f'(x)g'(x)\\rho(x;b)dx $$ and generated by the system of modified Laguerre polynomials $\\{L_{n}(x;b)\\}_{n=0}^\\infty$, where $b>0$. In the approximate calculation of the Fourier coefficients of the desired solution, the Gauss -- Laguerre quadrature formula is used.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical method for solving the Cauchy problem for ODEs using a system of polynomials generated by a system of modified Laguerre polynomials\",\"authors\":\"G. Akniyev, R. Gadzhimirzaev\",\"doi\":\"10.31029/demr.12.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a numerical realization of an iterative method for solving the Cauchy problem for ordinary differential equations, based on representing the solution in the form of a Fourier series by the system of polynomials $\\\\{L_{1,n}(x;b)\\\\}_{n=0}^\\\\infty$, orthonormal with respect to the Sobolev-type inner product $$ \\\\langle f,g\\\\rangle=f(0)g(0)+\\\\int_{0}^\\\\infty f'(x)g'(x)\\\\rho(x;b)dx $$ and generated by the system of modified Laguerre polynomials $\\\\{L_{n}(x;b)\\\\}_{n=0}^\\\\infty$, where $b>0$. In the approximate calculation of the Fourier coefficients of the desired solution, the Gauss -- Laguerre quadrature formula is used.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.12.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.12.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一种求解常微分方程Cauchy问题的迭代方法的数值实现,该方法基于多项式系统$\{L_{1,n}(x;b)\}_{n=0}^\infty$以傅里叶级数的形式表示解,该多项式系统相对于sobolev型内积$$\langle f,g\rangle=f(0)g(0)+\int_{0}^\infty f'(x)g'(x)\rho(x;b)dx$$是正交的,并由修改的Laguerre多项式系统$\{L_{n}(x;b)\}_{n=0}^\infty$生成,其中$b>0$。在近似计算所需解的傅里叶系数时,使用高斯—拉盖尔正交公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical method for solving the Cauchy problem for ODEs using a system of polynomials generated by a system of modified Laguerre polynomials
In this paper, we consider a numerical realization of an iterative method for solving the Cauchy problem for ordinary differential equations, based on representing the solution in the form of a Fourier series by the system of polynomials $\{L_{1,n}(x;b)\}_{n=0}^\infty$, orthonormal with respect to the Sobolev-type inner product $$ \langle f,g\rangle=f(0)g(0)+\int_{0}^\infty f'(x)g'(x)\rho(x;b)dx $$ and generated by the system of modified Laguerre polynomials $\{L_{n}(x;b)\}_{n=0}^\infty$, where $b>0$. In the approximate calculation of the Fourier coefficients of the desired solution, the Gauss -- Laguerre quadrature formula is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信