T. Fechter, J. Dolz, A. Chirindel, Matthias Schlachter, M. Carles, S. Adebahr, M. Mix, U. Nestle
{"title":"NSCLC中SBRT的全自动危险区测定","authors":"T. Fechter, J. Dolz, A. Chirindel, Matthias Schlachter, M. Carles, S. Adebahr, M. Mix, U. Nestle","doi":"10.3933/JROI-7-1-26","DOIUrl":null,"url":null,"abstract":"Lung cancer is the major cause of cancer death worldwide. The most common form of lung cancer is non-small cell lung cancer(NSCLC). Stereotactic body radiation therapy (SBRT) has emerged as a good alternative to surgery in patients with peripheralstage I NSCLC, demonstrating favorable tumor control and low toxicity. Due to spatial relationship to several critical organs atrisk, SBRT of centrally located lesions is associated with more severe toxicity and requires modification in dose application andfractionation, which is currently evaluated in clinical trials. Therefore a classification of lung tumors into central or peripheralis required. In this work we present a novel, highly versatile, mulitmodality tool for tumor classification which requires no userinteraction. Furthermore the tool can automatically segment the trachea, proximal bronchial tree, mediastinum, gross target volumeand internal target volume. The proposed work is evaluated on 19 cases with different image modalities assessing segmentationquality as well as classification accuracy. Experiments showed a good segmentation quality and a classification accuracy of 95 %.These results suggest the use of the proposed tool for clinical trials to assist clinicians in their work and to fasten up the workflowin NSCLC patients treatment.","PeriodicalId":426862,"journal":{"name":"Journal of Radiation Oncology Informatics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fully Automatic Danger Zone Determination for SBRT in NSCLC\",\"authors\":\"T. Fechter, J. Dolz, A. Chirindel, Matthias Schlachter, M. Carles, S. Adebahr, M. Mix, U. Nestle\",\"doi\":\"10.3933/JROI-7-1-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is the major cause of cancer death worldwide. The most common form of lung cancer is non-small cell lung cancer(NSCLC). Stereotactic body radiation therapy (SBRT) has emerged as a good alternative to surgery in patients with peripheralstage I NSCLC, demonstrating favorable tumor control and low toxicity. Due to spatial relationship to several critical organs atrisk, SBRT of centrally located lesions is associated with more severe toxicity and requires modification in dose application andfractionation, which is currently evaluated in clinical trials. Therefore a classification of lung tumors into central or peripheralis required. In this work we present a novel, highly versatile, mulitmodality tool for tumor classification which requires no userinteraction. Furthermore the tool can automatically segment the trachea, proximal bronchial tree, mediastinum, gross target volumeand internal target volume. The proposed work is evaluated on 19 cases with different image modalities assessing segmentationquality as well as classification accuracy. Experiments showed a good segmentation quality and a classification accuracy of 95 %.These results suggest the use of the proposed tool for clinical trials to assist clinicians in their work and to fasten up the workflowin NSCLC patients treatment.\",\"PeriodicalId\":426862,\"journal\":{\"name\":\"Journal of Radiation Oncology Informatics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Oncology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3933/JROI-7-1-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Oncology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3933/JROI-7-1-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully Automatic Danger Zone Determination for SBRT in NSCLC
Lung cancer is the major cause of cancer death worldwide. The most common form of lung cancer is non-small cell lung cancer(NSCLC). Stereotactic body radiation therapy (SBRT) has emerged as a good alternative to surgery in patients with peripheralstage I NSCLC, demonstrating favorable tumor control and low toxicity. Due to spatial relationship to several critical organs atrisk, SBRT of centrally located lesions is associated with more severe toxicity and requires modification in dose application andfractionation, which is currently evaluated in clinical trials. Therefore a classification of lung tumors into central or peripheralis required. In this work we present a novel, highly versatile, mulitmodality tool for tumor classification which requires no userinteraction. Furthermore the tool can automatically segment the trachea, proximal bronchial tree, mediastinum, gross target volumeand internal target volume. The proposed work is evaluated on 19 cases with different image modalities assessing segmentationquality as well as classification accuracy. Experiments showed a good segmentation quality and a classification accuracy of 95 %.These results suggest the use of the proposed tool for clinical trials to assist clinicians in their work and to fasten up the workflowin NSCLC patients treatment.