用玻尔兹曼机表示具有相互作用单元的系统的最小表示

Mauricio A. Valle, F. Urbina
{"title":"用玻尔兹曼机表示具有相互作用单元的系统的最小表示","authors":"Mauricio A. Valle, F. Urbina","doi":"10.1145/3571697.3571710","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative methodology to find a network model with the least amount of critical bonds necessary to represent the behavior of the interacting elements of a system. The model is based on a network of couplings inferred by an non-restricted Boltzmann machine, which allows finding a maximum entropy distribution (ME). For N elements, the process starts by removing from the set of N(N − 1)/2 bonds, those with the lowest intensity and calculating the Kullback-Leibler divergence (KL) in each step. The edge removal process stops before there is a drastic increase in the KL divergence. This process was applied to the European market indices over two different periods. The results provide an interesting description of the most significant interactions driving the market and, at the same time, identify markets with higher system importance.","PeriodicalId":400139,"journal":{"name":"Proceedings of the 2022 European Symposium on Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minimal representation of a system with interacting units using Boltzmann machines\",\"authors\":\"Mauricio A. Valle, F. Urbina\",\"doi\":\"10.1145/3571697.3571710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative methodology to find a network model with the least amount of critical bonds necessary to represent the behavior of the interacting elements of a system. The model is based on a network of couplings inferred by an non-restricted Boltzmann machine, which allows finding a maximum entropy distribution (ME). For N elements, the process starts by removing from the set of N(N − 1)/2 bonds, those with the lowest intensity and calculating the Kullback-Leibler divergence (KL) in each step. The edge removal process stops before there is a drastic increase in the KL divergence. This process was applied to the European market indices over two different periods. The results provide an interesting description of the most significant interactions driving the market and, at the same time, identify markets with higher system importance.\",\"PeriodicalId\":400139,\"journal\":{\"name\":\"Proceedings of the 2022 European Symposium on Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 European Symposium on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571697.3571710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 European Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571697.3571710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种替代方法,以寻找具有最少数量的关键键的网络模型,以表示系统中相互作用元素的行为。该模型基于由非受限玻尔兹曼机推断的耦合网络,可以找到最大熵分布(ME)。对于N个元素,该过程首先从N(N−1)/2个键集中移除强度最低的键,并在每个步骤中计算Kullback-Leibler散度(KL)。在KL散度急剧增加之前,边缘去除过程停止。这一过程在两个不同时期应用于欧洲市场指数。结果提供了对驱动市场的最重要的相互作用的有趣描述,同时,确定了具有更高系统重要性的市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The minimal representation of a system with interacting units using Boltzmann machines
This paper presents an alternative methodology to find a network model with the least amount of critical bonds necessary to represent the behavior of the interacting elements of a system. The model is based on a network of couplings inferred by an non-restricted Boltzmann machine, which allows finding a maximum entropy distribution (ME). For N elements, the process starts by removing from the set of N(N − 1)/2 bonds, those with the lowest intensity and calculating the Kullback-Leibler divergence (KL) in each step. The edge removal process stops before there is a drastic increase in the KL divergence. This process was applied to the European market indices over two different periods. The results provide an interesting description of the most significant interactions driving the market and, at the same time, identify markets with higher system importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信