基于学习的宽带毫米波网络导频预编码与合并

E. Olfat, H. S. Ghadikolaei, N. N. Moghadam, M. Bengtsson, C. Fischione
{"title":"基于学习的宽带毫米波网络导频预编码与合并","authors":"E. Olfat, H. S. Ghadikolaei, N. N. Moghadam, M. Bengtsson, C. Fischione","doi":"10.1109/CAMSAP.2017.8313146","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient channel estimation scheme with a minimum number of pilots for a frequency-selective millimeter-wave communication system. We model the dynamics of the channel's second-order statistics by a Markov process and develop a learning framework that finds the optimal precoding and combining vectors for pilot signals, given the channel dynamics. Using these vectors, the transmitter and receiver will sequentially estimate the corresponding angles of departure and arrival, and then refine the pilot precoding and combining vectors to minimize the error of estimating the small-scale fading of all subcarriers. Numerical results demonstrate near-optimality of our approach, compared to the oracle wherein the second-order statistics (not the dynamics) are perfectly known a priori.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning-Based pilot precoding and combining for wideband millimeter-wave networks\",\"authors\":\"E. Olfat, H. S. Ghadikolaei, N. N. Moghadam, M. Bengtsson, C. Fischione\",\"doi\":\"10.1109/CAMSAP.2017.8313146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient channel estimation scheme with a minimum number of pilots for a frequency-selective millimeter-wave communication system. We model the dynamics of the channel's second-order statistics by a Markov process and develop a learning framework that finds the optimal precoding and combining vectors for pilot signals, given the channel dynamics. Using these vectors, the transmitter and receiver will sequentially estimate the corresponding angles of departure and arrival, and then refine the pilot precoding and combining vectors to minimize the error of estimating the small-scale fading of all subcarriers. Numerical results demonstrate near-optimality of our approach, compared to the oracle wherein the second-order statistics (not the dynamics) are perfectly known a priori.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对频率选择毫米波通信系统,提出了一种最少导频的有效信道估计方案。我们通过马尔可夫过程对信道二阶统计量的动态建模,并开发了一个学习框架,该框架可以在给定信道动态的情况下为导频信号找到最佳预编码和组合向量。利用这些矢量,发送端和接收端依次估计出相应的出发角和到达角,然后对导频预编码和组合矢量进行细化,使估计所有子载波小尺度衰落的误差最小。与二阶统计量(不是动力学)是完全先验的oracle相比,数值结果显示了我们的方法的接近最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based pilot precoding and combining for wideband millimeter-wave networks
This paper proposes an efficient channel estimation scheme with a minimum number of pilots for a frequency-selective millimeter-wave communication system. We model the dynamics of the channel's second-order statistics by a Markov process and develop a learning framework that finds the optimal precoding and combining vectors for pilot signals, given the channel dynamics. Using these vectors, the transmitter and receiver will sequentially estimate the corresponding angles of departure and arrival, and then refine the pilot precoding and combining vectors to minimize the error of estimating the small-scale fading of all subcarriers. Numerical results demonstrate near-optimality of our approach, compared to the oracle wherein the second-order statistics (not the dynamics) are perfectly known a priori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信