{"title":"弱投影不变半单模","authors":"R. Yaşar","doi":"10.33401/FUJMA.869714","DOIUrl":null,"url":null,"abstract":"We introduce and investigate the notion of weak projection invariant semisimple modules. We deal with the structural properties of this new class of modules. In this trend we have indecomposable decompositions of the special class of the former class of modules via some module theoretical properties. As a consequence, we obtain when the finite exchange property implies full exchange property for the latter class of modules.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weak projection invariant semisimple modules\",\"authors\":\"R. Yaşar\",\"doi\":\"10.33401/FUJMA.869714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and investigate the notion of weak projection invariant semisimple modules. We deal with the structural properties of this new class of modules. In this trend we have indecomposable decompositions of the special class of the former class of modules via some module theoretical properties. As a consequence, we obtain when the finite exchange property implies full exchange property for the latter class of modules.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/FUJMA.869714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/FUJMA.869714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce and investigate the notion of weak projection invariant semisimple modules. We deal with the structural properties of this new class of modules. In this trend we have indecomposable decompositions of the special class of the former class of modules via some module theoretical properties. As a consequence, we obtain when the finite exchange property implies full exchange property for the latter class of modules.