基于局部二值模式和局部导数模式的手掌静脉识别

Leila Mirmohamadsadeghi, A. Drygajlo
{"title":"基于局部二值模式和局部导数模式的手掌静脉识别","authors":"Leila Mirmohamadsadeghi, A. Drygajlo","doi":"10.1109/IJCB.2011.6117804","DOIUrl":null,"url":null,"abstract":"Palm vein feature extraction from near infrared images is a challenging problem in hand pattern recognition. In this paper, a promising new approach based on local texture patterns is proposed. First, operators and histograms of multi-scale Local Binary Patterns (LBPs) are investigated in order to identify new efficient descriptors for palm vein patterns. Novel higher-order local pattern descriptors based on Local Derivative Pattern (LDP) histograms are then investigated for palm vein description. Both feature extraction methods are compared and evaluated in the framework of verification and identification tasks. Extensive experiments on CASIA Multi-Spectral Palmprint Image Database V1.0 (CASIA database) identify the LBP and LDP descriptors which are better adapted to palm vein texture. Tests on the CASIA datasets also show that the best adapted LDP descriptors consistently outperform their LBP counterparts in both palm vein verification and identification.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Palm vein recognition with Local Binary Patterns and Local Derivative Patterns\",\"authors\":\"Leila Mirmohamadsadeghi, A. Drygajlo\",\"doi\":\"10.1109/IJCB.2011.6117804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palm vein feature extraction from near infrared images is a challenging problem in hand pattern recognition. In this paper, a promising new approach based on local texture patterns is proposed. First, operators and histograms of multi-scale Local Binary Patterns (LBPs) are investigated in order to identify new efficient descriptors for palm vein patterns. Novel higher-order local pattern descriptors based on Local Derivative Pattern (LDP) histograms are then investigated for palm vein description. Both feature extraction methods are compared and evaluated in the framework of verification and identification tasks. Extensive experiments on CASIA Multi-Spectral Palmprint Image Database V1.0 (CASIA database) identify the LBP and LDP descriptors which are better adapted to palm vein texture. Tests on the CASIA datasets also show that the best adapted LDP descriptors consistently outperform their LBP counterparts in both palm vein verification and identification.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

近红外图像掌纹特征提取是手部模式识别中的一个难点。本文提出了一种基于局部纹理模式的新方法。首先,研究了多尺度局部二值模式(lbp)的算子和直方图,以识别新的有效的手掌静脉模式描述符。研究了基于局部导数模式直方图的手掌静脉高阶局部模式描述子。在验证和识别任务的框架下,对两种特征提取方法进行了比较和评价。在CASIA多光谱掌纹图像数据库V1.0 (CASIA数据库)上进行了大量实验,发现了更适合掌纹纹理的LBP和LDP描述符。在CASIA数据集上的测试也表明,最适合的LDP描述符在手掌静脉验证和识别方面始终优于LBP对应的描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Palm vein recognition with Local Binary Patterns and Local Derivative Patterns
Palm vein feature extraction from near infrared images is a challenging problem in hand pattern recognition. In this paper, a promising new approach based on local texture patterns is proposed. First, operators and histograms of multi-scale Local Binary Patterns (LBPs) are investigated in order to identify new efficient descriptors for palm vein patterns. Novel higher-order local pattern descriptors based on Local Derivative Pattern (LDP) histograms are then investigated for palm vein description. Both feature extraction methods are compared and evaluated in the framework of verification and identification tasks. Extensive experiments on CASIA Multi-Spectral Palmprint Image Database V1.0 (CASIA database) identify the LBP and LDP descriptors which are better adapted to palm vein texture. Tests on the CASIA datasets also show that the best adapted LDP descriptors consistently outperform their LBP counterparts in both palm vein verification and identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信