基于SVM和Co-seMLP的文档问答方法

Xiaoan Liu, Tao Peng
{"title":"基于SVM和Co-seMLP的文档问答方法","authors":"Xiaoan Liu, Tao Peng","doi":"10.1109/CIS2018.2018.00046","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our features and models for Chinese Open-Domain Question Answering DBQA shared task in NLPCC-ICCPOL 2017. After the analysis of task and dataset, 8 features were extracted, and then 4 models were trained. Finally, our model achieves a result, in which MRR score is 0.494292 and MAP score is 0.491736.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SVM and Co-seMLP Integrated Method for Document-Based Question Answering\",\"authors\":\"Xiaoan Liu, Tao Peng\",\"doi\":\"10.1109/CIS2018.2018.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our features and models for Chinese Open-Domain Question Answering DBQA shared task in NLPCC-ICCPOL 2017. After the analysis of task and dataset, 8 features were extracted, and then 4 models were trained. Finally, our model achieves a result, in which MRR score is 0.494292 and MAP score is 0.491736.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了我们在nlpcc - iccppol 2017中中文开放域问答DBQA共享任务的特征和模型。通过对任务和数据集的分析,提取出8个特征,然后训练出4个模型。最后,我们的模型得到了一个结果,其中MRR得分为0.494292,MAP得分为0.491736。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SVM and Co-seMLP Integrated Method for Document-Based Question Answering
In this paper, we describe our features and models for Chinese Open-Domain Question Answering DBQA shared task in NLPCC-ICCPOL 2017. After the analysis of task and dataset, 8 features were extracted, and then 4 models were trained. Finally, our model achieves a result, in which MRR score is 0.494292 and MAP score is 0.491736.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信