圆弧图最大独立集的并行算法

A. Sprague
{"title":"圆弧图最大独立集的并行算法","authors":"A. Sprague","doi":"10.1109/SECON.1992.202301","DOIUrl":null,"url":null,"abstract":"The author presents a parallel algorithm of cost O(n log n) to find a maximum independent set of a circular arc graph. In the CREW PRAM model the algorithm takes O(log n) time, while in the EREW PRAM model it requires O(log/sup 2/ n) time. It illustrates the use of divide-and-conquer in parallel algorithms. The heart of the algorithm solves this problem on an interval graph, which is derived from the given circular arc graph. Postprocessing selects a maximum independent set on the given circular arc graph.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parallel algorithm for maximum independent set of a circular-arc graph\",\"authors\":\"A. Sprague\",\"doi\":\"10.1109/SECON.1992.202301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author presents a parallel algorithm of cost O(n log n) to find a maximum independent set of a circular arc graph. In the CREW PRAM model the algorithm takes O(log n) time, while in the EREW PRAM model it requires O(log/sup 2/ n) time. It illustrates the use of divide-and-conquer in parallel algorithms. The heart of the algorithm solves this problem on an interval graph, which is derived from the given circular arc graph. Postprocessing selects a maximum independent set on the given circular arc graph.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求圆弧图最大独立集的并行算法,其代价为0 (n log n)。在CREW PRAM模型中,算法耗时为O(log n),而在EREW PRAM模型中,耗时为O(log/sup 2/ n)。它说明了并行算法中分治法的使用。该算法的核心是在一个区间图上解决这个问题,该区间图是由给定的圆弧图导出的。后处理在给定的圆弧图上选择一个最大独立集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel algorithm for maximum independent set of a circular-arc graph
The author presents a parallel algorithm of cost O(n log n) to find a maximum independent set of a circular arc graph. In the CREW PRAM model the algorithm takes O(log n) time, while in the EREW PRAM model it requires O(log/sup 2/ n) time. It illustrates the use of divide-and-conquer in parallel algorithms. The heart of the algorithm solves this problem on an interval graph, which is derived from the given circular arc graph. Postprocessing selects a maximum independent set on the given circular arc graph.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信