在高性能处理器中消除电压紧急情况的控制技术

R. Joseph, D. Brooks, M. Martonosi
{"title":"在高性能处理器中消除电压紧急情况的控制技术","authors":"R. Joseph, D. Brooks, M. Martonosi","doi":"10.1109/HPCA.2003.1183526","DOIUrl":null,"url":null,"abstract":"Increasing focus on power dissipation issues in current microprocessors has led to a host of proposals for clock gating and other power-saving techniques. While generally effective at reducing average power, many of these techniques have the undesired side-effect of increasing both the variability of power dissipation and the variability of current drawn by the processor This increase in current variability, often referred to as the dI/dt problem, can cause supply voltage fluctuations. Such voltage fluctuations lead to unreliable circuits if not addressed, and increasingly expensive chip packaging techniques are needed to mitigate them. This paper proposes and evaluates a methodology for augmenting packaging techniques for dI/dt with microarchitectural control mechanisms. We discuss the resonant frequencies most relevant to current microprocessor packages, produce and evaluate a \"dI/dt stressmark\" that exercises the system at its resonant frequency, and characterize the behavior of more mainstream applications. Based on these results plus evaluations of the impact of controller error and delay, our microarchitectural control proposals offer bounds on supply voltage fluctuations, with nearly negligible impact on performance and energy. With the ITRS roadmap predicting aggressive drops in supply voltage and power supply impedances in coming chip generations, novel voltage control techniques will be required to stay on track. Our microarchitectural dI/dt controllers represent a step in this direction.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Control techniques to eliminate voltage emergencies in high performance processors\",\"authors\":\"R. Joseph, D. Brooks, M. Martonosi\",\"doi\":\"10.1109/HPCA.2003.1183526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing focus on power dissipation issues in current microprocessors has led to a host of proposals for clock gating and other power-saving techniques. While generally effective at reducing average power, many of these techniques have the undesired side-effect of increasing both the variability of power dissipation and the variability of current drawn by the processor This increase in current variability, often referred to as the dI/dt problem, can cause supply voltage fluctuations. Such voltage fluctuations lead to unreliable circuits if not addressed, and increasingly expensive chip packaging techniques are needed to mitigate them. This paper proposes and evaluates a methodology for augmenting packaging techniques for dI/dt with microarchitectural control mechanisms. We discuss the resonant frequencies most relevant to current microprocessor packages, produce and evaluate a \\\"dI/dt stressmark\\\" that exercises the system at its resonant frequency, and characterize the behavior of more mainstream applications. Based on these results plus evaluations of the impact of controller error and delay, our microarchitectural control proposals offer bounds on supply voltage fluctuations, with nearly negligible impact on performance and energy. With the ITRS roadmap predicting aggressive drops in supply voltage and power supply impedances in coming chip generations, novel voltage control techniques will be required to stay on track. Our microarchitectural dI/dt controllers represent a step in this direction.\",\"PeriodicalId\":150992,\"journal\":{\"name\":\"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2003.1183526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

摘要

对当前微处理器功耗问题的日益关注导致了时钟门控和其他节能技术的大量建议。虽然在降低平均功率方面通常是有效的,但这些技术中的许多都有不希望的副作用,即增加功耗的可变性和处理器所吸收的电流的可变性。这种电流可变性的增加,通常被称为dI/dt问题,可能导致电源电压波动。如果不加以解决,这种电压波动会导致不可靠的电路,并且需要越来越昂贵的芯片封装技术来缓解它们。本文提出并评估了一种用微架构控制机制增强dI/dt封装技术的方法。我们讨论了与当前微处理器封装最相关的谐振频率,生成并评估了在其谐振频率下运行系统的“dI/dt应力标记”,并表征了更主流应用的行为。基于这些结果以及对控制器误差和延迟影响的评估,我们的微架构控制建议提供了电源电压波动的界限,对性能和能量的影响几乎可以忽略不计。随着ITRS路线图预测未来几代芯片的电源电压和电源阻抗将大幅下降,新的电压控制技术将需要保持在轨道上。我们的微架构dI/dt控制器代表了朝这个方向迈出的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control techniques to eliminate voltage emergencies in high performance processors
Increasing focus on power dissipation issues in current microprocessors has led to a host of proposals for clock gating and other power-saving techniques. While generally effective at reducing average power, many of these techniques have the undesired side-effect of increasing both the variability of power dissipation and the variability of current drawn by the processor This increase in current variability, often referred to as the dI/dt problem, can cause supply voltage fluctuations. Such voltage fluctuations lead to unreliable circuits if not addressed, and increasingly expensive chip packaging techniques are needed to mitigate them. This paper proposes and evaluates a methodology for augmenting packaging techniques for dI/dt with microarchitectural control mechanisms. We discuss the resonant frequencies most relevant to current microprocessor packages, produce and evaluate a "dI/dt stressmark" that exercises the system at its resonant frequency, and characterize the behavior of more mainstream applications. Based on these results plus evaluations of the impact of controller error and delay, our microarchitectural control proposals offer bounds on supply voltage fluctuations, with nearly negligible impact on performance and energy. With the ITRS roadmap predicting aggressive drops in supply voltage and power supply impedances in coming chip generations, novel voltage control techniques will be required to stay on track. Our microarchitectural dI/dt controllers represent a step in this direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信