{"title":"香蕉树的反向超级边缘魔法力量","authors":"S. S. Basha","doi":"10.1504/IJCSM.2018.10016512","DOIUrl":null,"url":null,"abstract":"A reverse magic labelling of a graph G(V, E) is a bijection f: V ∪ E → {1, 2, 3, ......, v + e} such that for all edges xy, f(xy) - {f(x) + f(y)} is a constant which is denoted by c(f). A reverse magic labelling of a graph G(V, E) is called reverse super edge-magic labelling of G if f(V) = {1, 2, ...... v} and f(E) = {v + 1, v + 2, ......, v + e}. The reverse super edge-magic strength of a graph G,rsm(G), is defined as the minimum of all c(f) where the minimum is taken over all reverse edge-magic labelling f of G. In this paper we invented the reverse super edge-magic strength of banana trees.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverse super edge-magic strength of banana trees\",\"authors\":\"S. S. Basha\",\"doi\":\"10.1504/IJCSM.2018.10016512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reverse magic labelling of a graph G(V, E) is a bijection f: V ∪ E → {1, 2, 3, ......, v + e} such that for all edges xy, f(xy) - {f(x) + f(y)} is a constant which is denoted by c(f). A reverse magic labelling of a graph G(V, E) is called reverse super edge-magic labelling of G if f(V) = {1, 2, ...... v} and f(E) = {v + 1, v + 2, ......, v + e}. The reverse super edge-magic strength of a graph G,rsm(G), is defined as the minimum of all c(f) where the minimum is taken over all reverse edge-magic labelling f of G. In this paper we invented the reverse super edge-magic strength of banana trees.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.10016512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10016512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
图G(V, E)的反向幻标是一个双射f: V∪E→{1,2,3,......, v + e}使得对于所有边xy, f(xy) - {f(x) + f(y)}是一个常数,用c(f)表示。如果f(V) ={1,2, ......,则图G(V, E)的反向幻标称为图G的反向超边幻标和f(E) = {v + 1, v + 2, ......, v + e}。图G的逆超边魔幻强度rsm(G)定义为所有c(f)的最小值,其中最小值取所有G的逆边魔幻标记f。本文发明了香蕉树的逆超边魔幻强度。
A reverse magic labelling of a graph G(V, E) is a bijection f: V ∪ E → {1, 2, 3, ......, v + e} such that for all edges xy, f(xy) - {f(x) + f(y)} is a constant which is denoted by c(f). A reverse magic labelling of a graph G(V, E) is called reverse super edge-magic labelling of G if f(V) = {1, 2, ...... v} and f(E) = {v + 1, v + 2, ......, v + e}. The reverse super edge-magic strength of a graph G,rsm(G), is defined as the minimum of all c(f) where the minimum is taken over all reverse edge-magic labelling f of G. In this paper we invented the reverse super edge-magic strength of banana trees.