存在债务的财富分配。福克-普朗克描述

M. Torregrossa, G. Toscani
{"title":"存在债务的财富分配。福克-普朗克描述","authors":"M. Torregrossa, G. Toscani","doi":"10.4310/CMS.2018.V16.N2.A11","DOIUrl":null,"url":null,"abstract":"We consider here a Fokker--Planck equation with variable coefficient of diffusion which appears in the modeling of the wealth distribution in a multi-agent society. At difference with previous studies, to describe a society in which agents can have debts, we allow the wealth variable to be negative. It is shown that, even starting with debts, if the initial mean wealth is assumed positive, the solution of the Fokker--Planck equation is such that debts are absorbed in time, and a unique equilibrium density located in the positive part of the real axis will be reached.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Wealth distribution in presence of debts. A Fokker--Planck description\",\"authors\":\"M. Torregrossa, G. Toscani\",\"doi\":\"10.4310/CMS.2018.V16.N2.A11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider here a Fokker--Planck equation with variable coefficient of diffusion which appears in the modeling of the wealth distribution in a multi-agent society. At difference with previous studies, to describe a society in which agents can have debts, we allow the wealth variable to be negative. It is shown that, even starting with debts, if the initial mean wealth is assumed positive, the solution of the Fokker--Planck equation is such that debts are absorbed in time, and a unique equilibrium density located in the positive part of the real axis will be reached.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CMS.2018.V16.N2.A11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2018.V16.N2.A11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们在此考虑一个多主体社会财富分配模型中出现的具有可变扩散系数的Fokker—Planck方程。与以往的研究不同的是,为了描述一个代理人可以负债的社会,我们允许财富变量为负。结果表明,即使从债务开始,如果假设初始平均财富为正,则Fokker—Planck方程的解是这样的,即债务随时间被吸收,并且将达到位于实轴正部分的唯一平衡密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wealth distribution in presence of debts. A Fokker--Planck description
We consider here a Fokker--Planck equation with variable coefficient of diffusion which appears in the modeling of the wealth distribution in a multi-agent society. At difference with previous studies, to describe a society in which agents can have debts, we allow the wealth variable to be negative. It is shown that, even starting with debts, if the initial mean wealth is assumed positive, the solution of the Fokker--Planck equation is such that debts are absorbed in time, and a unique equilibrium density located in the positive part of the real axis will be reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信