Min-Chun Yang, De-An Huang, Chih-Yun Tsai, Y. Wang
{"title":"基于Contourlet变换的保边单幅图像超分辨率自学习","authors":"Min-Chun Yang, De-An Huang, Chih-Yun Tsai, Y. Wang","doi":"10.1109/ICME.2012.169","DOIUrl":null,"url":null,"abstract":"We present a self-learning approach for single image super-resolution (SR), with the ability to preserve high frequency components such as edges in resulting high resolution (HR) images. Given a low-resolution (LR) input image, we construct its image pyramid and produce a super pixel dataset. By extracting context information from the super-pixels, we propose to deploy context-specific contour let transform on them in order to model the relationship (via support vector regression) between the input patches and their associated directional high-frequency responses. These learned models are applied to predict the SR output with satisfactory quality. Unlike prior learning-based SR methods, our approach advances a self-learning technique and does not require the self similarity of image patches within or across image scales. More importantly, we do not need to collect training LR/HR image data in advance and only require a single LR input image. Empirical results verify the effectiveness of our approach, which quantitatively and qualitatively outperforms existing interpolation or learning-based SR methods.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Self-Learning of Edge-Preserving Single Image Super-Resolution via Contourlet Transform\",\"authors\":\"Min-Chun Yang, De-An Huang, Chih-Yun Tsai, Y. Wang\",\"doi\":\"10.1109/ICME.2012.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a self-learning approach for single image super-resolution (SR), with the ability to preserve high frequency components such as edges in resulting high resolution (HR) images. Given a low-resolution (LR) input image, we construct its image pyramid and produce a super pixel dataset. By extracting context information from the super-pixels, we propose to deploy context-specific contour let transform on them in order to model the relationship (via support vector regression) between the input patches and their associated directional high-frequency responses. These learned models are applied to predict the SR output with satisfactory quality. Unlike prior learning-based SR methods, our approach advances a self-learning technique and does not require the self similarity of image patches within or across image scales. More importantly, we do not need to collect training LR/HR image data in advance and only require a single LR input image. Empirical results verify the effectiveness of our approach, which quantitatively and qualitatively outperforms existing interpolation or learning-based SR methods.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Learning of Edge-Preserving Single Image Super-Resolution via Contourlet Transform
We present a self-learning approach for single image super-resolution (SR), with the ability to preserve high frequency components such as edges in resulting high resolution (HR) images. Given a low-resolution (LR) input image, we construct its image pyramid and produce a super pixel dataset. By extracting context information from the super-pixels, we propose to deploy context-specific contour let transform on them in order to model the relationship (via support vector regression) between the input patches and their associated directional high-frequency responses. These learned models are applied to predict the SR output with satisfactory quality. Unlike prior learning-based SR methods, our approach advances a self-learning technique and does not require the self similarity of image patches within or across image scales. More importantly, we do not need to collect training LR/HR image data in advance and only require a single LR input image. Empirical results verify the effectiveness of our approach, which quantitatively and qualitatively outperforms existing interpolation or learning-based SR methods.