TAER:时间感知实体检索-利用过去在新闻文章中找到相关实体

Gianluca Demartini, M. S. Missen, Roi Blanco, H. Zaragoza
{"title":"TAER:时间感知实体检索-利用过去在新闻文章中找到相关实体","authors":"Gianluca Demartini, M. S. Missen, Roi Blanco, H. Zaragoza","doi":"10.1145/1871437.1871661","DOIUrl":null,"url":null,"abstract":"Retrieving entities instead of just documents has become an important task for search engines. In this paper we study entity retrieval for news applications, and in particular the importance of the news trail history (i.e., past related articles) in determining the relevant entities in current articles. This is an important problem in applications that display retrieved entities to the user, together with the news article. We analyze and discuss some statistics about entities in news trails, unveiling some unknown findings such as the persistence of relevance over time. We focus on the task of query dependent entity retrieval over time. For this task we evaluate several features, and show that their combinations significantly improves performance.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"TAER: time-aware entity retrieval-exploiting the past to find relevant entities in news articles\",\"authors\":\"Gianluca Demartini, M. S. Missen, Roi Blanco, H. Zaragoza\",\"doi\":\"10.1145/1871437.1871661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrieving entities instead of just documents has become an important task for search engines. In this paper we study entity retrieval for news applications, and in particular the importance of the news trail history (i.e., past related articles) in determining the relevant entities in current articles. This is an important problem in applications that display retrieved entities to the user, together with the news article. We analyze and discuss some statistics about entities in news trails, unveiling some unknown findings such as the persistence of relevance over time. We focus on the task of query dependent entity retrieval over time. For this task we evaluate several features, and show that their combinations significantly improves performance.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

检索实体而不仅仅是文档已经成为搜索引擎的一项重要任务。在本文中,我们研究了新闻应用中的实体检索,特别是新闻追踪历史(即过去的相关文章)在确定当前文章中的相关实体方面的重要性。在向用户显示检索到的实体和新闻文章的应用程序中,这是一个重要的问题。我们分析和讨论了一些关于新闻轨迹中实体的统计数据,揭示了一些未知的发现,如相关性随时间的持续存在。随着时间的推移,我们将重点关注查询相关实体检索任务。对于这个任务,我们评估了几个特征,并表明它们的组合显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TAER: time-aware entity retrieval-exploiting the past to find relevant entities in news articles
Retrieving entities instead of just documents has become an important task for search engines. In this paper we study entity retrieval for news applications, and in particular the importance of the news trail history (i.e., past related articles) in determining the relevant entities in current articles. This is an important problem in applications that display retrieved entities to the user, together with the news article. We analyze and discuss some statistics about entities in news trails, unveiling some unknown findings such as the persistence of relevance over time. We focus on the task of query dependent entity retrieval over time. For this task we evaluate several features, and show that their combinations significantly improves performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信