P. Kollias, D. McLaughlin, S. Frasier, M. Oue, E. Luke, A. Sneddon
{"title":"低功率相控阵x波段气象雷达的进展与应用","authors":"P. Kollias, D. McLaughlin, S. Frasier, M. Oue, E. Luke, A. Sneddon","doi":"10.1109/RADAR.2018.8378762","DOIUrl":null,"url":null,"abstract":"Low-cost, low-power X-band phased array radar (LPAR) is an enabling technology for future deployment of distributed short-range radar networks. Such networks offer the potential for superior and lower altitude surveillance of atmospheric and airborne events compared with today's larger, long range national radar networks. Two dimensionally steered (phase-phase steering, without motors or other moving parts) phased array radars are complex systems comprising multiple subsystems including several thousand transmit/receive (T/R) channels, beam steering computers, thermal management. Owing to this complexity and the associated cost, phased array technology has not historically been used in weather and air traffic control radars. Competition for the frequency spectrum traditionally reserved for long-range radars is motivating the search for new approaches to national air surveillance; this has motivated R&D investment in two-dimensional X-band LPAR over the past decade, to the point where prototype systems are now emerging in several application settings including, for the first time, the university research setting. Two-dimensional high-speed (inertia-less) beam steering combined with dual polarization, programmable/adaptive waveforms, and the ability to combine multiple radars into networks is leading to new atmospheric science research opportunities related to hazardous storm forecasting and response, understanding cloud physics, water resource management, monitoring the movement and dispersal of hazardous plumes, and other areas.","PeriodicalId":379567,"journal":{"name":"2018 IEEE Radar Conference (RadarConf18)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Advances and applications in low-power phased array X-band weather radars\",\"authors\":\"P. Kollias, D. McLaughlin, S. Frasier, M. Oue, E. Luke, A. Sneddon\",\"doi\":\"10.1109/RADAR.2018.8378762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-cost, low-power X-band phased array radar (LPAR) is an enabling technology for future deployment of distributed short-range radar networks. Such networks offer the potential for superior and lower altitude surveillance of atmospheric and airborne events compared with today's larger, long range national radar networks. Two dimensionally steered (phase-phase steering, without motors or other moving parts) phased array radars are complex systems comprising multiple subsystems including several thousand transmit/receive (T/R) channels, beam steering computers, thermal management. Owing to this complexity and the associated cost, phased array technology has not historically been used in weather and air traffic control radars. Competition for the frequency spectrum traditionally reserved for long-range radars is motivating the search for new approaches to national air surveillance; this has motivated R&D investment in two-dimensional X-band LPAR over the past decade, to the point where prototype systems are now emerging in several application settings including, for the first time, the university research setting. Two-dimensional high-speed (inertia-less) beam steering combined with dual polarization, programmable/adaptive waveforms, and the ability to combine multiple radars into networks is leading to new atmospheric science research opportunities related to hazardous storm forecasting and response, understanding cloud physics, water resource management, monitoring the movement and dispersal of hazardous plumes, and other areas.\",\"PeriodicalId\":379567,\"journal\":{\"name\":\"2018 IEEE Radar Conference (RadarConf18)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Radar Conference (RadarConf18)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2018.8378762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radar Conference (RadarConf18)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2018.8378762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances and applications in low-power phased array X-band weather radars
Low-cost, low-power X-band phased array radar (LPAR) is an enabling technology for future deployment of distributed short-range radar networks. Such networks offer the potential for superior and lower altitude surveillance of atmospheric and airborne events compared with today's larger, long range national radar networks. Two dimensionally steered (phase-phase steering, without motors or other moving parts) phased array radars are complex systems comprising multiple subsystems including several thousand transmit/receive (T/R) channels, beam steering computers, thermal management. Owing to this complexity and the associated cost, phased array technology has not historically been used in weather and air traffic control radars. Competition for the frequency spectrum traditionally reserved for long-range radars is motivating the search for new approaches to national air surveillance; this has motivated R&D investment in two-dimensional X-band LPAR over the past decade, to the point where prototype systems are now emerging in several application settings including, for the first time, the university research setting. Two-dimensional high-speed (inertia-less) beam steering combined with dual polarization, programmable/adaptive waveforms, and the ability to combine multiple radars into networks is leading to new atmospheric science research opportunities related to hazardous storm forecasting and response, understanding cloud physics, water resource management, monitoring the movement and dispersal of hazardous plumes, and other areas.