基于新的双曲正弦代价函数的自适应算法

Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim
{"title":"基于新的双曲正弦代价函数的自适应算法","authors":"Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim","doi":"10.1109/ACSSC.2017.8335459","DOIUrl":null,"url":null,"abstract":"This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive algorithm based on a new hyperbolic sine cost function\",\"authors\":\"Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim\",\"doi\":\"10.1109/ACSSC.2017.8335459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种随机梯度算法,该算法采用了唯一的双曲正弦目标函数。该算法属于可变步长(VSS)类。在许多应用中,例如回声抵消、均衡等,这类算法被证明是非常稳定和有效的。与其他现有的VSS算法相比,该算法只需要一个调优参数。实验结果表明,该算法通过对调优参数的次优选择,在静止和跟踪场景下都能取得很好的效果。通过分析收敛性和稳态误差性能,证明了该方法的优良性能。同时,给出了一个基于最小双曲正弦误差的最优解,以验证该算法对Wiener解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive algorithm based on a new hyperbolic sine cost function
This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信