Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim
{"title":"基于新的双曲正弦代价函数的自适应算法","authors":"Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim","doi":"10.1109/ACSSC.2017.8335459","DOIUrl":null,"url":null,"abstract":"This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive algorithm based on a new hyperbolic sine cost function\",\"authors\":\"Ahmad Khalifi, Qadri Mayyala, Naveed Iqbal, A. Zerguine, K. Abed-Meraim\",\"doi\":\"10.1109/ACSSC.2017.8335459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive algorithm based on a new hyperbolic sine cost function
This paper introduces a stochastic gradient algorithm, which uses an exclusive hyperbolic sine objective function. The algorithm belongs to the variable step size (VSS) class. The algorithms in this class are shown to be very stable and effective in many applications, e.g., echo-cancellation, equalization, and others. In this algorithm, as opposed to other existing VSS algorithms, only one tuning parameter is needed. Experimental results show that with a sub-optimal selection of the tuning parameter, the algorithm provides very promising results in both stationary and tracking scenarios. Analytic convergence and steady state error performance analysis are provided to demonstrate the excellent performance. Also, an optimal solution, based on the least hyperbolic sine error, is derived to confirm the convergence of the proposed algorithm towards the Wiener solution.