用单调性约束识别部分隐协变量模型

Minji Bang, Wayne Yuan Gao, Andrew Postlewaite, Holger Sieg
{"title":"用单调性约束识别部分隐协变量模型","authors":"Minji Bang, Wayne Yuan Gao, Andrew Postlewaite, Holger Sieg","doi":"10.2139/ssrn.3765884","DOIUrl":null,"url":null,"abstract":"This paper develops a new method for identifying econometric models with partially latent covariates. Such data structures arise naturally in industrial organization and labor economics settings where data are collected using an \"input-based sampling\" strategy, e.g., if the sampling unit is one of multiple labor input factors. We show that the latent covariates can be nonparametrically identified, if they are functions of a common shock satisfying some plausible monotonicity assumptions. With the latent covariates identified, semiparametric estimation of the outcome equation proceeds within a standard IV framework that accounts for the endogeneity of the covariates. We illustrate the usefulness of our method using two applications. The first focuses on pharmacies: we find that production function differences between chains and independent pharmacies may partially explain the observed transformation of the industry structure. Our second application investigates education achievement functions and illustrates important differences in child investments between married and divorced couples.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Monotonicity Restrictions to Identify Models with Partially Latent Covariates\",\"authors\":\"Minji Bang, Wayne Yuan Gao, Andrew Postlewaite, Holger Sieg\",\"doi\":\"10.2139/ssrn.3765884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a new method for identifying econometric models with partially latent covariates. Such data structures arise naturally in industrial organization and labor economics settings where data are collected using an \\\"input-based sampling\\\" strategy, e.g., if the sampling unit is one of multiple labor input factors. We show that the latent covariates can be nonparametrically identified, if they are functions of a common shock satisfying some plausible monotonicity assumptions. With the latent covariates identified, semiparametric estimation of the outcome equation proceeds within a standard IV framework that accounts for the endogeneity of the covariates. We illustrate the usefulness of our method using two applications. The first focuses on pharmacies: we find that production function differences between chains and independent pharmacies may partially explain the observed transformation of the industry structure. Our second application investigates education achievement functions and illustrates important differences in child investments between married and divorced couples.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3765884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3765884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种识别具有部分潜协变量的计量经济模型的新方法。这种数据结构在产业组织和劳动经济学环境中自然出现,其中使用“基于投入的抽样”策略收集数据,例如,如果抽样单位是多个劳动投入因素之一。我们证明了潜协变量可以被非参数识别,如果它们是一个共同冲击的函数,满足一些似是而非的单调性假设。随着潜在协变量的识别,结果方程的半参数估计在一个标准的IV框架内进行,该框架考虑了协变量的内性。我们用两个应用程序来说明我们的方法的有效性。第一个重点是药店:我们发现连锁药店和独立药店之间的生产函数差异可以部分解释我们观察到的行业结构转变。我们的第二个应用调查了教育成就函数,并说明了已婚和离婚夫妇在子女投资方面的重要差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Monotonicity Restrictions to Identify Models with Partially Latent Covariates
This paper develops a new method for identifying econometric models with partially latent covariates. Such data structures arise naturally in industrial organization and labor economics settings where data are collected using an "input-based sampling" strategy, e.g., if the sampling unit is one of multiple labor input factors. We show that the latent covariates can be nonparametrically identified, if they are functions of a common shock satisfying some plausible monotonicity assumptions. With the latent covariates identified, semiparametric estimation of the outcome equation proceeds within a standard IV framework that accounts for the endogeneity of the covariates. We illustrate the usefulness of our method using two applications. The first focuses on pharmacies: we find that production function differences between chains and independent pharmacies may partially explain the observed transformation of the industry structure. Our second application investigates education achievement functions and illustrates important differences in child investments between married and divorced couples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信