任务执行时间不确定的周期性实时任务多处理器节能调度逼近算法

Jian-Jia Chen, Chuan-Yue Yang, Hsueh-I Lu, Tei-Wei Kuo
{"title":"任务执行时间不确定的周期性实时任务多处理器节能调度逼近算法","authors":"Jian-Jia Chen, Chuan-Yue Yang, Hsueh-I Lu, Tei-Wei Kuo","doi":"10.1109/RTAS.2008.24","DOIUrl":null,"url":null,"abstract":"Energy-efficiency has been an important system issue in hardware and software designs for both real-time embedded systems and server systems. This research explores systems with probabilistic distribution on the execution time of realtime tasks on homogeneous multiprocessor platforms with the capability of dynamic voltage scaling (DVS). The objective is to derive a task partition which minimizes the expected energy consumption for completing all the given tasks in time. We give an efficient 1.13-approximation algorithm and a polynomial-time approximation scheme (PTAS) to provide worst-case guarantees for the strongly NP-hard problem. Experimental results show that the algorithms can effectively minimize the expected energy consumption.","PeriodicalId":130593,"journal":{"name":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Approximation Algorithms for Multiprocessor Energy-Efficient Scheduling of Periodic Real-Time Tasks with Uncertain Task Execution Time\",\"authors\":\"Jian-Jia Chen, Chuan-Yue Yang, Hsueh-I Lu, Tei-Wei Kuo\",\"doi\":\"10.1109/RTAS.2008.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficiency has been an important system issue in hardware and software designs for both real-time embedded systems and server systems. This research explores systems with probabilistic distribution on the execution time of realtime tasks on homogeneous multiprocessor platforms with the capability of dynamic voltage scaling (DVS). The objective is to derive a task partition which minimizes the expected energy consumption for completing all the given tasks in time. We give an efficient 1.13-approximation algorithm and a polynomial-time approximation scheme (PTAS) to provide worst-case guarantees for the strongly NP-hard problem. Experimental results show that the algorithms can effectively minimize the expected energy consumption.\",\"PeriodicalId\":130593,\"journal\":{\"name\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2008.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2008.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在实时嵌入式系统和服务器系统的硬件和软件设计中,能效一直是一个重要的系统问题。本研究探讨了具有动态电压缩放(DVS)能力的同构多处理器平台上实时任务执行时间概率分布的系统。目标是推导出一个任务分区,该分区能使所有给定任务的预期能量消耗最小化。我们给出了一个有效的1.13近似算法和一个多项式时间近似格式(PTAS)来提供强np困难问题的最坏情况保证。实验结果表明,该算法能有效地降低期望能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Multiprocessor Energy-Efficient Scheduling of Periodic Real-Time Tasks with Uncertain Task Execution Time
Energy-efficiency has been an important system issue in hardware and software designs for both real-time embedded systems and server systems. This research explores systems with probabilistic distribution on the execution time of realtime tasks on homogeneous multiprocessor platforms with the capability of dynamic voltage scaling (DVS). The objective is to derive a task partition which minimizes the expected energy consumption for completing all the given tasks in time. We give an efficient 1.13-approximation algorithm and a polynomial-time approximation scheme (PTAS) to provide worst-case guarantees for the strongly NP-hard problem. Experimental results show that the algorithms can effectively minimize the expected energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信