未知扰动随机奇异系统的分布式融合滤波

Dongmei Qu, Jing Ma, Shuli Sun
{"title":"未知扰动随机奇异系统的分布式融合滤波","authors":"Dongmei Qu, Jing Ma, Shuli Sun","doi":"10.1109/WCICA.2010.5555033","DOIUrl":null,"url":null,"abstract":"Based on the decomposition in canonical form, an optimal state filter in the linear unbiased minimum variance sense is given for single-sensor stochastic singular systems with unknown disturbance and correlated noises in the case of Y-observable system, which is independent of the unknown disturbance. When the system is measured by multiple sensors, the computation formula for the filtering error cross-covariance matrix between any two sensor subsystems is derived. Further, the distributed information fusion state filter is given based on the fusion algorithm weighted by matrix in the linear minimum variance sense. The simulation research shows the effectiveness.","PeriodicalId":315420,"journal":{"name":"2010 8th World Congress on Intelligent Control and Automation","volume":"485 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed fusion filter for stochastic singular systems with unknown disturbance\",\"authors\":\"Dongmei Qu, Jing Ma, Shuli Sun\",\"doi\":\"10.1109/WCICA.2010.5555033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the decomposition in canonical form, an optimal state filter in the linear unbiased minimum variance sense is given for single-sensor stochastic singular systems with unknown disturbance and correlated noises in the case of Y-observable system, which is independent of the unknown disturbance. When the system is measured by multiple sensors, the computation formula for the filtering error cross-covariance matrix between any two sensor subsystems is derived. Further, the distributed information fusion state filter is given based on the fusion algorithm weighted by matrix in the linear minimum variance sense. The simulation research shows the effectiveness.\",\"PeriodicalId\":315420,\"journal\":{\"name\":\"2010 8th World Congress on Intelligent Control and Automation\",\"volume\":\"485 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 8th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2010.5555033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 8th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2010.5555033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在正则化分解的基础上,给出了具有未知干扰和相关噪声的单传感器随机奇异系统在线性无偏最小方差意义下的最优状态滤波器,该滤波器与未知干扰无关。当系统由多个传感器测量时,导出了任意两个传感器子系统间滤波误差交叉协方差矩阵的计算公式。基于线性最小方差意义下的矩阵加权融合算法,给出了分布式信息融合状态滤波器。仿真研究表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed fusion filter for stochastic singular systems with unknown disturbance
Based on the decomposition in canonical form, an optimal state filter in the linear unbiased minimum variance sense is given for single-sensor stochastic singular systems with unknown disturbance and correlated noises in the case of Y-observable system, which is independent of the unknown disturbance. When the system is measured by multiple sensors, the computation formula for the filtering error cross-covariance matrix between any two sensor subsystems is derived. Further, the distributed information fusion state filter is given based on the fusion algorithm weighted by matrix in the linear minimum variance sense. The simulation research shows the effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信