LS-DYNA中钢筋混凝土屏障串联冲击建模

Roshan Sharma, Chiara Silvestri Dobrovolny, S. Hurlebaus, Maysam Kiani
{"title":"LS-DYNA中钢筋混凝土屏障串联冲击建模","authors":"Roshan Sharma, Chiara Silvestri Dobrovolny, S. Hurlebaus, Maysam Kiani","doi":"10.1115/imece2021-66627","DOIUrl":null,"url":null,"abstract":"\n The design of longitudinal barriers using reinforced concrete is typical in roadside safety design. Roadside safety hardware such as bridge rails, median barriers, and transitions are designed to safely contain and redirect impacting vehicles without imposing any significant risks to the occupants. As full-scale crash tests of new designs are expensive and time-consuming, finite element modeling and simulation of the impact event is often involved. In LS-DYNA, one of the most popular software in roadside design, there are multiple material models for concrete modeling and there is no specific guideline on the selection of the concrete material model. This paper evaluates the behavior of material models MAT_CSCM_CONCRETE and MAT_RHT during the study of truck platoon implications. The concrete erosion, deflection, and failure mechanism of two consecutive tractor-van trailer impacts into the barrier FEA models were analyzed to select a representative material model for further study.","PeriodicalId":146533,"journal":{"name":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced Concrete Barrier Modeling In-Series Impacts in LS-DYNA\",\"authors\":\"Roshan Sharma, Chiara Silvestri Dobrovolny, S. Hurlebaus, Maysam Kiani\",\"doi\":\"10.1115/imece2021-66627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The design of longitudinal barriers using reinforced concrete is typical in roadside safety design. Roadside safety hardware such as bridge rails, median barriers, and transitions are designed to safely contain and redirect impacting vehicles without imposing any significant risks to the occupants. As full-scale crash tests of new designs are expensive and time-consuming, finite element modeling and simulation of the impact event is often involved. In LS-DYNA, one of the most popular software in roadside design, there are multiple material models for concrete modeling and there is no specific guideline on the selection of the concrete material model. This paper evaluates the behavior of material models MAT_CSCM_CONCRETE and MAT_RHT during the study of truck platoon implications. The concrete erosion, deflection, and failure mechanism of two consecutive tractor-van trailer impacts into the barrier FEA models were analyzed to select a representative material model for further study.\",\"PeriodicalId\":146533,\"journal\":{\"name\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-66627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-66627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢筋混凝土纵向护栏设计是道路安全设计中的典型。路边安全硬件,如桥梁轨道、中间屏障和过渡,旨在安全地容纳和重新定向撞击车辆,而不会对乘员造成任何重大风险。由于新设计的全尺寸碰撞试验既昂贵又耗时,因此通常需要对碰撞事件进行有限元建模和仿真。LS-DYNA是目前最流行的道路设计软件之一,在LS-DYNA中,混凝土建模有多种材料模型,混凝土材料模型的选择没有具体的指导原则。本文对卡车排影响研究中材料模型MAT_CSCM_CONCRETE和MAT_RHT的性能进行了评价。通过对连续两次牵引车-货车挂车碰撞对混凝土的侵蚀、挠曲和破坏机理进行分析,选择具有代表性的材料模型进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced Concrete Barrier Modeling In-Series Impacts in LS-DYNA
The design of longitudinal barriers using reinforced concrete is typical in roadside safety design. Roadside safety hardware such as bridge rails, median barriers, and transitions are designed to safely contain and redirect impacting vehicles without imposing any significant risks to the occupants. As full-scale crash tests of new designs are expensive and time-consuming, finite element modeling and simulation of the impact event is often involved. In LS-DYNA, one of the most popular software in roadside design, there are multiple material models for concrete modeling and there is no specific guideline on the selection of the concrete material model. This paper evaluates the behavior of material models MAT_CSCM_CONCRETE and MAT_RHT during the study of truck platoon implications. The concrete erosion, deflection, and failure mechanism of two consecutive tractor-van trailer impacts into the barrier FEA models were analyzed to select a representative material model for further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信