社交媒体驱动的图像检索

Adrian Daniel Popescu, G. Grefenstette
{"title":"社交媒体驱动的图像检索","authors":"Adrian Daniel Popescu, G. Grefenstette","doi":"10.1145/1991996.1992029","DOIUrl":null,"url":null,"abstract":"People often try to find an image using a short query and images are usually indexed using short annotations. Matching the query vocabulary with the indexing vocabulary is a difficult problem when little text is available. Textual user generated content in Web 2.0 platforms contains a wealth of data that can help solve this problem. Here we describe how to use Wikipedia and Flickr content to improve this match. The initial query is launched in Flickr and we create a query model based on co-occurring terms. We also calculate nearby concepts using Wikipedia and use these to expand the query. The final results are obtained by ranking the results for the expanded query using the similarity between their annotation and the Flickr model. Evaluation of these expansion and ranking techniques, over the Image CLEF 2010 Wikipedia Collection containing 237,434 images and their multilingual textual annotations, shows that a consistent improvement compared to state of the art methods.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Social media driven image retrieval\",\"authors\":\"Adrian Daniel Popescu, G. Grefenstette\",\"doi\":\"10.1145/1991996.1992029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People often try to find an image using a short query and images are usually indexed using short annotations. Matching the query vocabulary with the indexing vocabulary is a difficult problem when little text is available. Textual user generated content in Web 2.0 platforms contains a wealth of data that can help solve this problem. Here we describe how to use Wikipedia and Flickr content to improve this match. The initial query is launched in Flickr and we create a query model based on co-occurring terms. We also calculate nearby concepts using Wikipedia and use these to expand the query. The final results are obtained by ranking the results for the expanded query using the similarity between their annotation and the Flickr model. Evaluation of these expansion and ranking techniques, over the Image CLEF 2010 Wikipedia Collection containing 237,434 images and their multilingual textual annotations, shows that a consistent improvement compared to state of the art methods.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

人们经常尝试使用简短的查询来查找图像,并且通常使用简短的注释对图像进行索引。当可用的文本很少时,将查询词汇表与索引词汇表匹配是一个难题。Web 2.0平台中用户生成的文本内容包含大量数据,可以帮助解决这个问题。这里我们将描述如何使用Wikipedia和Flickr内容来改进这种匹配。初始查询是在Flickr中启动的,我们基于共同出现的术语创建查询模型。我们还使用维基百科计算附近的概念,并使用这些来扩展查询。通过使用注释和Flickr模型之间的相似性对扩展查询的结果进行排序,从而获得最终结果。在包含237,434张图片及其多语言文本注释的Image CLEF 2010维基百科集合上对这些扩展和排名技术进行评估,表明与最先进的方法相比,它们有了持续的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social media driven image retrieval
People often try to find an image using a short query and images are usually indexed using short annotations. Matching the query vocabulary with the indexing vocabulary is a difficult problem when little text is available. Textual user generated content in Web 2.0 platforms contains a wealth of data that can help solve this problem. Here we describe how to use Wikipedia and Flickr content to improve this match. The initial query is launched in Flickr and we create a query model based on co-occurring terms. We also calculate nearby concepts using Wikipedia and use these to expand the query. The final results are obtained by ranking the results for the expanded query using the similarity between their annotation and the Flickr model. Evaluation of these expansion and ranking techniques, over the Image CLEF 2010 Wikipedia Collection containing 237,434 images and their multilingual textual annotations, shows that a consistent improvement compared to state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信