将有序时间序列方法应用于网格工作负载跟踪

Stefan Podlipnig
{"title":"将有序时间序列方法应用于网格工作负载跟踪","authors":"Stefan Podlipnig","doi":"10.1109/MASCOT.2009.5367039","DOIUrl":null,"url":null,"abstract":"Ordinal time series analysis is a simple approach to the investigation of experimental data. The basic idea is to consider the order relations between the values of a time series and not the values themselves. This results in fast and robust algorithms that extract the basic intrinsic structure of the given data series. This paper gives a short overview of this approach and describes the application of simple ordinal time series methods like rank autocorrelation, local rank autocorrelation and permutation entropy to workload traces from large grid computing systems. We show how these methods can be used to extract important correlation information from experimental traces and how these methods outperform traditional methods.","PeriodicalId":275737,"journal":{"name":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying ordinal time series methods to grid workload traces\",\"authors\":\"Stefan Podlipnig\",\"doi\":\"10.1109/MASCOT.2009.5367039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordinal time series analysis is a simple approach to the investigation of experimental data. The basic idea is to consider the order relations between the values of a time series and not the values themselves. This results in fast and robust algorithms that extract the basic intrinsic structure of the given data series. This paper gives a short overview of this approach and describes the application of simple ordinal time series methods like rank autocorrelation, local rank autocorrelation and permutation entropy to workload traces from large grid computing systems. We show how these methods can be used to extract important correlation information from experimental traces and how these methods outperform traditional methods.\",\"PeriodicalId\":275737,\"journal\":{\"name\":\"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOT.2009.5367039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2009.5367039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

序时间序列分析是研究实验数据的一种简便方法。基本思想是考虑时间序列的值之间的顺序关系,而不是值本身。这就产生了快速而健壮的算法,可以提取给定数据序列的基本内在结构。本文简要介绍了这种方法,并描述了简单的有序时间序列方法,如秩自相关、局部秩自相关和排列熵在大型网格计算系统工作负载跟踪中的应用。我们展示了如何使用这些方法从实验轨迹中提取重要的相关信息,以及这些方法如何优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying ordinal time series methods to grid workload traces
Ordinal time series analysis is a simple approach to the investigation of experimental data. The basic idea is to consider the order relations between the values of a time series and not the values themselves. This results in fast and robust algorithms that extract the basic intrinsic structure of the given data series. This paper gives a short overview of this approach and describes the application of simple ordinal time series methods like rank autocorrelation, local rank autocorrelation and permutation entropy to workload traces from large grid computing systems. We show how these methods can be used to extract important correlation information from experimental traces and how these methods outperform traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信