基于二元粒子群优化的视觉变压器自动剪枝方法

Jihene Tmamna, Emna ben Ayed, Rahma Fourati, Mounir Ben Ayed
{"title":"基于二元粒子群优化的视觉变压器自动剪枝方法","authors":"Jihene Tmamna, Emna ben Ayed, Rahma Fourati, Mounir Ben Ayed","doi":"10.1109/ISCC58397.2023.10218144","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic vision transformer pruning method that aims to alleviate the difficulty of deploying vision transformer models on resource-constrained devices. The proposed method aims to automatically search for the optimal pruned model by removing irrelevant units while maintaining the original accuracy. Specifically, the model pruning is formulated as an optimization problem using binary particle swarm optimization. To demonstrate its effectiveness, our method was tested on the DeiT Transformer model with CIFAR-10 and CIFAR-100 datasets. Experimental results demonstrate that our method achieves a significant reduction in computational cost with slight performance degradation.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automatic Vision Transformer Pruning Method Based on Binary Particle Swarm Optimization\",\"authors\":\"Jihene Tmamna, Emna ben Ayed, Rahma Fourati, Mounir Ben Ayed\",\"doi\":\"10.1109/ISCC58397.2023.10218144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatic vision transformer pruning method that aims to alleviate the difficulty of deploying vision transformer models on resource-constrained devices. The proposed method aims to automatically search for the optimal pruned model by removing irrelevant units while maintaining the original accuracy. Specifically, the model pruning is formulated as an optimization problem using binary particle swarm optimization. To demonstrate its effectiveness, our method was tested on the DeiT Transformer model with CIFAR-10 and CIFAR-100 datasets. Experimental results demonstrate that our method achieves a significant reduction in computational cost with slight performance degradation.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自动视觉变压器剪枝方法,旨在缓解在资源受限的设备上部署视觉变压器模型的困难。该方法在保持原始精度的前提下,通过去除不相关单元,自动搜索出最优剪枝模型。具体来说,模型剪枝是一个利用二元粒子群优化的优化问题。为了证明该方法的有效性,我们用CIFAR-10和CIFAR-100数据集在DeiT Transformer模型上进行了测试。实验结果表明,我们的方法在性能略有下降的情况下显著降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Automatic Vision Transformer Pruning Method Based on Binary Particle Swarm Optimization
This paper presents an automatic vision transformer pruning method that aims to alleviate the difficulty of deploying vision transformer models on resource-constrained devices. The proposed method aims to automatically search for the optimal pruned model by removing irrelevant units while maintaining the original accuracy. Specifically, the model pruning is formulated as an optimization problem using binary particle swarm optimization. To demonstrate its effectiveness, our method was tested on the DeiT Transformer model with CIFAR-10 and CIFAR-100 datasets. Experimental results demonstrate that our method achieves a significant reduction in computational cost with slight performance degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信