等离子体有机太阳能电池的统一有限差分多物理场建模

W. Sha, W. Choy, W. Chew
{"title":"等离子体有机太阳能电池的统一有限差分多物理场建模","authors":"W. Sha, W. Choy, W. Chew","doi":"10.1109/IWEM.2013.6888767","DOIUrl":null,"url":null,"abstract":"A multiphysics study carries out on plasmonic organic solar cells (OSCs) by solving Maxwell's equations and semiconductor (Poisson, drift-diffusion, and continuity) equations simultaneously with unified finite-difference framework. Regarding the Maxwell's equations, the perfectly matched layer and periodic boundary conditions are imposed at the vertical and lateral directions of OSCs to simulate the infinite air region and metallic grating electrode, respectively. In view of the semiconductor equations, the Scharfetter-Gummel scheme and semi-implicit strategy are adopted respectively in the space and time domains. To model the bulk heterojunction OSCs, the Langevin bimolecular recombination and Onsager-Braun exciton dissociation models are fully taken into account. The exciton generation rate depending on the optical absorption of the organic active material can be obtained by solving the Maxwell's equations and will be inserted into the semiconductor equations. Through the multiphysics model, we observed the increased shortcircuit current and dropped fill factor when OSCs incorporate a metallic grating anode supporting surface plasmon resonances. This work provides fundamental multiphysics modeling and understanding for plasmonic organic photovoltaics.","PeriodicalId":119627,"journal":{"name":"2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiphysics modeling of plasmonic organic solar cells with a unified finite-difference method\",\"authors\":\"W. Sha, W. Choy, W. Chew\",\"doi\":\"10.1109/IWEM.2013.6888767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiphysics study carries out on plasmonic organic solar cells (OSCs) by solving Maxwell's equations and semiconductor (Poisson, drift-diffusion, and continuity) equations simultaneously with unified finite-difference framework. Regarding the Maxwell's equations, the perfectly matched layer and periodic boundary conditions are imposed at the vertical and lateral directions of OSCs to simulate the infinite air region and metallic grating electrode, respectively. In view of the semiconductor equations, the Scharfetter-Gummel scheme and semi-implicit strategy are adopted respectively in the space and time domains. To model the bulk heterojunction OSCs, the Langevin bimolecular recombination and Onsager-Braun exciton dissociation models are fully taken into account. The exciton generation rate depending on the optical absorption of the organic active material can be obtained by solving the Maxwell's equations and will be inserted into the semiconductor equations. Through the multiphysics model, we observed the increased shortcircuit current and dropped fill factor when OSCs incorporate a metallic grating anode supporting surface plasmon resonances. This work provides fundamental multiphysics modeling and understanding for plasmonic organic photovoltaics.\",\"PeriodicalId\":119627,\"journal\":{\"name\":\"2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWEM.2013.6888767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Electromagnetics, Applications and Student Innovation Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWEM.2013.6888767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在统一的有限差分框架下,通过求解麦克斯韦方程组和半导体(泊松、漂移扩散和连续性)方程组,对等离子体有机太阳能电池(OSCs)进行了多物理场研究。在麦克斯韦方程组中,分别在OSCs的垂直方向和横向方向施加完全匹配的层边界条件和周期边界条件,模拟无限空气区和金属光栅电极。针对半导体方程,分别在空间和时间域采用了Scharfetter-Gummel格式和半隐式策略。为了模拟大块异质结osc,充分考虑了Langevin双分子重组和Onsager-Braun激子解离模型。激子产生速率取决于有机活性物质的光吸收,可以通过求解麦克斯韦方程得到,并将其插入到半导体方程中。通过多物理场模型,我们观察到当OSCs中加入支持表面等离子体共振的金属光栅阳极时,短路电流增加,填充因子下降。这项工作为等离子体有机光伏提供了基本的多物理场建模和理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiphysics modeling of plasmonic organic solar cells with a unified finite-difference method
A multiphysics study carries out on plasmonic organic solar cells (OSCs) by solving Maxwell's equations and semiconductor (Poisson, drift-diffusion, and continuity) equations simultaneously with unified finite-difference framework. Regarding the Maxwell's equations, the perfectly matched layer and periodic boundary conditions are imposed at the vertical and lateral directions of OSCs to simulate the infinite air region and metallic grating electrode, respectively. In view of the semiconductor equations, the Scharfetter-Gummel scheme and semi-implicit strategy are adopted respectively in the space and time domains. To model the bulk heterojunction OSCs, the Langevin bimolecular recombination and Onsager-Braun exciton dissociation models are fully taken into account. The exciton generation rate depending on the optical absorption of the organic active material can be obtained by solving the Maxwell's equations and will be inserted into the semiconductor equations. Through the multiphysics model, we observed the increased shortcircuit current and dropped fill factor when OSCs incorporate a metallic grating anode supporting surface plasmon resonances. This work provides fundamental multiphysics modeling and understanding for plasmonic organic photovoltaics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信