$\mathcal A_\theta^{alg} \ r_乘以\mathbb Z_2$的上同调及其chen - connes对

Safdar Quddus
{"title":"$\\mathcal A_\\theta^{alg} \\ r_乘以\\mathbb Z_2$的上同调及其chen - connes对","authors":"Safdar Quddus","doi":"10.4171/JNCG/11-3-2","DOIUrl":null,"url":null,"abstract":"We calculate the Hochschild and cyclic cohomology of the $\\mathbb Z_2$ toroidal orbifold $\\mathcal A_\\theta^{alg} \\rtimes \\mathbb Z_2$. We also calculate the Chern-Connes pairing of the even cyclic cohomology group with the known elements of $K_0(\\mathcal A_\\theta^{alg} \\rtimes \\mathbb Z_2)$.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cohomology of $\\\\mathcal A_\\\\theta^{alg} \\\\rtimes \\\\mathbb Z_2$ and its Chern-Connes pairing\",\"authors\":\"Safdar Quddus\",\"doi\":\"10.4171/JNCG/11-3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the Hochschild and cyclic cohomology of the $\\\\mathbb Z_2$ toroidal orbifold $\\\\mathcal A_\\\\theta^{alg} \\\\rtimes \\\\mathbb Z_2$. We also calculate the Chern-Connes pairing of the even cyclic cohomology group with the known elements of $K_0(\\\\mathcal A_\\\\theta^{alg} \\\\rtimes \\\\mathbb Z_2)$.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/11-3-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/11-3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们计算了$\mathbb Z_2$环面轨道$\mathcal A_\theta^{alg} \r乘以\mathbb Z_2$的Hochschild和循环上同调。我们还计算了已知元$K_0(\mathcal A_\theta^{alg} \rtimes \mathbb Z_2)$的偶环上同群的chen - connes对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology of $\mathcal A_\theta^{alg} \rtimes \mathbb Z_2$ and its Chern-Connes pairing
We calculate the Hochschild and cyclic cohomology of the $\mathbb Z_2$ toroidal orbifold $\mathcal A_\theta^{alg} \rtimes \mathbb Z_2$. We also calculate the Chern-Connes pairing of the even cyclic cohomology group with the known elements of $K_0(\mathcal A_\theta^{alg} \rtimes \mathbb Z_2)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信