{"title":"心电模式与心率波动分析特征在情绪识别系统中的比较","authors":"H. Ferdinando, T. Seppänen, E. Alasaarela","doi":"10.1109/CIBCB.2016.7758108","DOIUrl":null,"url":null,"abstract":"We propose new features for emotion recognition from short ECG signals. The features represent the statistical distribution of dominant frequencies, calculated using spectrogram analysis of intrinsic mode function after applying the bivariate empirical mode decomposition to ECG. KNN was used to classify emotions in valence and arousal for a 3-class problem (low-medium-high). Using ECG from the Mahnob-HCI database, the average accuracies for valence and arousal were 55.8% and 59.7% respectively with 10-fold cross validation. The accuracies using features from standard Heart Rate Variability analysis were 42.6% and 47.7% for valence and arousal respectively for the 3-class problem. These features were also tested using subject-independent validation, achieving an accuracy of 59.2% for valence and 58.7% for arousal. The proposed features also showed better performance compared to features based on statistical distribution of instantaneous frequency, calculated using Hilbert transform of intrinsic mode function after applying standard empirical mode decomposition and bivariate empirical mode decomposition to ECG. We conclude that the proposed features offer a promising approach to emotion recognition based on short ECG signals. The proposed features could be potentially used also in applications in which it is important to detect quickly any changes in emotional state.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Comparing features from ECG pattern and HRV analysis for emotion recognition system\",\"authors\":\"H. Ferdinando, T. Seppänen, E. Alasaarela\",\"doi\":\"10.1109/CIBCB.2016.7758108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose new features for emotion recognition from short ECG signals. The features represent the statistical distribution of dominant frequencies, calculated using spectrogram analysis of intrinsic mode function after applying the bivariate empirical mode decomposition to ECG. KNN was used to classify emotions in valence and arousal for a 3-class problem (low-medium-high). Using ECG from the Mahnob-HCI database, the average accuracies for valence and arousal were 55.8% and 59.7% respectively with 10-fold cross validation. The accuracies using features from standard Heart Rate Variability analysis were 42.6% and 47.7% for valence and arousal respectively for the 3-class problem. These features were also tested using subject-independent validation, achieving an accuracy of 59.2% for valence and 58.7% for arousal. The proposed features also showed better performance compared to features based on statistical distribution of instantaneous frequency, calculated using Hilbert transform of intrinsic mode function after applying standard empirical mode decomposition and bivariate empirical mode decomposition to ECG. We conclude that the proposed features offer a promising approach to emotion recognition based on short ECG signals. The proposed features could be potentially used also in applications in which it is important to detect quickly any changes in emotional state.\",\"PeriodicalId\":368740,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2016.7758108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing features from ECG pattern and HRV analysis for emotion recognition system
We propose new features for emotion recognition from short ECG signals. The features represent the statistical distribution of dominant frequencies, calculated using spectrogram analysis of intrinsic mode function after applying the bivariate empirical mode decomposition to ECG. KNN was used to classify emotions in valence and arousal for a 3-class problem (low-medium-high). Using ECG from the Mahnob-HCI database, the average accuracies for valence and arousal were 55.8% and 59.7% respectively with 10-fold cross validation. The accuracies using features from standard Heart Rate Variability analysis were 42.6% and 47.7% for valence and arousal respectively for the 3-class problem. These features were also tested using subject-independent validation, achieving an accuracy of 59.2% for valence and 58.7% for arousal. The proposed features also showed better performance compared to features based on statistical distribution of instantaneous frequency, calculated using Hilbert transform of intrinsic mode function after applying standard empirical mode decomposition and bivariate empirical mode decomposition to ECG. We conclude that the proposed features offer a promising approach to emotion recognition based on short ECG signals. The proposed features could be potentially used also in applications in which it is important to detect quickly any changes in emotional state.